

2000 Clay Street, Suite 200 Denver, CO 80211 (303) 781-9590 www.yeh-eng.com

Project No. 220-063

February 10, 2021

Mr. Ron Gibson, P.E. Stanley Consultants 8000 South Chester Street, Suite 500 Centennial, Colorado 80112

#### Subject: Preliminary Geotechnical Study Structure O-19-D 23558/23559 Region 2 Bridge Bundle CDOT Region 2, Colorado

Dear Mr. Gibson:

This memorandum presents the results of Yeh and Associates, Inc.'s (Yeh) preliminary geotechnical engineering study for the proposed replacement of Structure O-19-D as part of the CDOT Region 2 Bridge Bundle Design-Build Project.

The CDOT Region 2 Bridge Bundle Design-Build Project consists of the replacement of a total of 19 structures bundled together as a single project. These structures are rural bridges on essential highway corridors (US 350, US 24, CO 239, and CO 9) in southeastern and central Colorado. These key corridors provide rural mobility, intraand interstate commerce, movement of agricultural products and supplies, and access to tourist destinations. The design-build project consists of 17 bridges and two Additionally Requested Elements (ARE) structures.

This design-build project is jointly funded by the USDOT FHWA Competitive Highway Bridge Program grant (14 structures, Project No. 23558) and the Colorado Bridge Enterprise (five structures, Project No. 23559). These projects are combined to form one design-build project. The two ARE structures are part of the five bridges funded by the Colorado Bridge Enterprise.

The 19 bridges identified to be included in the Region 2 Bridge Bundle were selected based on similarities in the bridge conditions, risk factors, site characteristics, and probable replacement type, with the goal of achieving economy of scale. Seventeen of the bridges being replaced are at least 80 years old. Five of the bridges are load-restricted, limiting trucking routes through major sections of the US 24 and US 350 corridors. The bundle includes nine timber bridges, four concrete box culverts, one corrugated metal pipe (CMP), four concrete I-beam bridges, and one I-beam bridge with corrugated metal deck.

#### **1 PROJECT UNDERSTANDING**

Bridge O-19-D is part of the Region 2 Bridge Bundle project that will be delivered as a design-build project. Our preliminary geotechnical study was completed to support the 30% design level that will be included in the design build bid package. We understand the existing structure will be replaced with either a concrete box culvert (CBC) or a bridge structure. The new structure will be constructed along the current roadway alignment and existing

roadway grade will be maintained. No significant cut or fills are required for construction of the proposed replacement structure.

#### 2 SUBSURFACE CONDITIONS

Two bridge borings, O-19-D-B-1 and O-19-D-B-2, were drilled by Yeh in the vicinity of the existing bridge, and two pavement borings, O-19-D-P-1 and O-19-D-P-2, were drilled along the existing pavement approximately 250 feet from the bridge. The approximate boring locations are shown on the engineering geology sheet in Appendix A. The legend and boring logs are included in Appendix B. Laboratory test results are provided in Appendix C and are shown on the boring logs.

The bridge borings encountered lean clay overlying shale bedrock. Table 1 provides a summary of the bedrock and groundwater conditions for the bridge borings. The surface elevations, approximate bedrock depths/elevations, and approximate groundwater depths/elevations are presented to the nearest 0.5 feet. The groundwater depths and elevations are based on observations during drilling.

| Boring ID      | Location <sup>1</sup><br>(Northing,<br>Easting) | Ground<br>Surface<br>Elevation at<br>Time of<br>Drilling <sup>1</sup> (feet) | Approx.<br>Depth to<br>Top of<br>Competent<br>Bedrock <sup>1</sup><br>(feet) | Approx.<br>Elevation to<br>Top of<br>Competent<br>Bedrock <sup>1</sup><br>(feet) | Approx.<br>Groundwater<br>Depth <sup>1, 2</sup><br>(feet) | Approx.<br>Groundwater<br>Elevation <sup>1, 2</sup><br>(feet) |
|----------------|-------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------|
| O-19-D-<br>B-1 | 243837.306,<br>355927.407                       | 5683.0                                                                       | 33.0                                                                         | 5650.0                                                                           | 33.0                                                      | 5650.0                                                        |
| O-19-D-<br>B-2 | 243754.512,<br>355930.360                       | 5683.0                                                                       | 34.0                                                                         | 5649.0                                                                           | 34.0                                                      | 5649.0                                                        |

#### Table 1. Summary of Bedrock and Groundwater Conditions

Notes:

(1) Surface elevations, approximate bedrock depths/elevations, and approximate groundwater depths/elevations are presented to the nearest 0.5 feet. Location and elevation are provided by project surveyor.

(2) Groundwater depths and elevations are based on observations during drilling.

#### **3** BRIDGE FOUNDATION RECOMMENDATIONS

We understand that the replacement structure will consist of either a new bridge structure or a concrete box culvert structure (CBC). If a bridge structure is selected, then the abutments and piers will be supported on driven H-piles or drilled shafts. If CBC structure is selected, then the structure will be founded on a shallow mat foundation. Wing walls for the bridge and CBC structures will be founded on shallow strip foundations.

Based on the subsurface conditions encountered during our preliminary study, our engineering analysis, and our experience with similar projects, it is our opinion that driven H-pile and drilled shaft foundations are suitable for support of the bridge structure. Shallow foundations are suitable for support of the CBC and wing wall structures. Recommendations for the drilled shafts are presented in Section 3.2, driven H-pile recommendations are provided in Section 3.3, and CBC foundation recommendations are presented in Section 3.4.



The soil and bedrock properties were estimated from penetration resistance, material descriptions, and laboratory data. The design and construction of the foundation elements should comply with all applicable requirements and guidelines listed in AASHTO (2020) and the CDOT Standard Specifications (CDOT 2019).

#### 3.1 Shallow Foundation Recommendations

Based on the depth to competent bedrock and the anticipated loading requirements, it is our opinion that shallow foundations are not suitable to support the bridge abutments. Bedrock is anticipated about 20 feet below the existing channel bottom and the relatively soft clays observed above the bedrock are not suitable for support of shallow foundations.

#### 3.2 Drilled Shaft Recommendations

#### 3.2.1 Drilled Shaft Nominal Axial Resistance

The estimated bearing resistance should be developed from the side and tip resistance in the underlying competent bedrock. The resistance from the overburden soil should be neglected. The design approach in Abu-Hejleh et al. (2003) provides recommendations for the use of an updated Colorado SPT-based (UCSB) design method. In this design method, the nominal side and tip resistance of a drilled shaft in the sedimentary bedrock is proportional to the driven sampler penetration resistance. This approach was generally used to estimate the axial resistance in the bedrock. Based on local practice, the modified California penetration resistance is considered to be equivalent to a standard penetration test (SPT) penetration resistance, i.e. N value, in bedrock.

Table 2 contains the recommended values for the nominal side and tip resistance for drilled shafts founded in the underlying competent bedrock. The upper three feet of competent bedrock penetration shall not be used for drilled shaft resistance due to the likelihood of construction disturbance and possible additional weathering. To account for axial group effects, the minimum spacing requirements between drilled shafts should be three diameters from center-to-center.

| Reference  | Approximate Top<br>of Competent | Tip Resista | ance (ksf)          | Side Res | istance, (ksf)       |
|------------|---------------------------------|-------------|---------------------|----------|----------------------|
| Boring     | Bedrock<br>Elevation (feet)     | Nominal     | Factored<br>(Φ=0.5) | Nominal  | Factored<br>(Φ=0.45) |
| O-19-D-B-1 | 5650.0                          | 125         | 62.5                | 14.5     | 6.5                  |
| O-19-D-B-2 | 5649.0                          | 90          | 45                  | 10       | 4.5                  |

Table 2. Recommended Drilled Shaft Axial Resistance

#### 3.2.2 Drilled Shaft Lateral Resistance

The input parameters provided in Table 3 are recommended for use with the computer program LPILE to develop the soil models used to evaluate the drilled shaft response to lateral loading. Table 3 provides the estimated values associated with the soil types encountered in the borings. They can also be used for driven H-piles, which will be described in Section 3.3. The nature and type of loading should be considered carefully. Individual soil layers and their extent can be averaged or distinguished by referring to the boring logs at the locations of the proposed bridge. The soils and/or bedrock materials prone to future disturbance, such as from utility excavations or frost heave, should be neglected in the lateral load analyses to the depth of disturbance, which may require more than but should not be less than three feet.



Recommendations for p-y multiplier values ( $P_m$  values) to account for the reduction in lateral capacity due to group effects are provided in Section 10.7.3.12 of AASHTO (2020). The  $P_m$  value will depend on the direction of the applied load, center-to-center spacing, and location of the foundation element within the group.

| Soil Type                     | LPILE Soil Criteria                  | AGT <sup>1</sup> BG |                  | Friction<br>Angle, | Undrained<br>Cohesion, | Strain<br>Factor, |                  | odulus<br>ic (pci) |
|-------------------------------|--------------------------------------|---------------------|------------------|--------------------|------------------------|-------------------|------------------|--------------------|
|                               |                                      | AGT <sup>1</sup>    | BGT <sup>2</sup> | (deg.)             | (psf)                  | ε50               | AGT <sup>1</sup> | BGT <sup>2</sup>   |
| Class 1 Structure<br>Backfill | Sand<br>(Reese)                      | 130                 | 67.5             | 34                 | -                      | -                 | 90               | 60                 |
| Clay                          | Stiff Clay w/o Free<br>Water (Reese) | 120                 | 57.5             | -                  | 200                    | 0.01              | -                | -                  |
| Shale Bedrock                 | Stiff Clay w/o Free<br>Water (Reese) | 130                 | 130              | -                  | 8,000                  | 0.004             | -                | -                  |

#### Table 3. LPILE Parameters

Note: <sup>1</sup>Above Groundwater Table <sup>2</sup>Below Groundwater Table

#### 3.2.3 General Drilled Shaft Recommendations

The following recommendations can be used in the design and construction of the drilled shafts.

- Groundwater and potentially caving soils may be encountered during drilling depending on the time of year and location. The Contractor shall construct the drilled shafts using means and methods that maintain a stable hole.
- Bedrock may be very hard at various elevations. The contractor should mobilize equipment of sufficient size and operating condition to achieve the required design bedrock penetration.
- Drilled shaft construction shall not disturb previously installed drilled shafts. The drilled shaft concrete should have sufficient time to cure before construction on a drilled shaft within three shaft diameters (center to center spacing) begins to prevent interaction between shafts during excavation and concrete placement.
- Based on the results of the field investigation and experience with similar properly constructed drilled shaft foundations, it is estimated that foundation settlement will be less than approximately ½ inch when designed according to the criteria presented in this report.
- A representative of the Contractor's engineer should observe drilled shaft installation operations on a full-time basis.

#### 3.3 Driven H-Pile Recommendations

#### 3.3.1 Driven H-Pile Axial Resistance

Steel H-piles driven into bedrock may be designed for a nominal axial resistance equal to 32 kips per square inch (ksi) multiplied by the cross-sectional area of the pile for piles composed of Grade 50 ksi steel for use with LRFD Strength Limit State design. Piles should be driven to refusal into the underlying bedrock as defined in Section 502.05 of CDOT (2019). A wave equation analysis using the Contractor's pile driving equipment is necessary to estimate pile drivability.



#### 3.3.2 Driven H-Pile Axial Resistance Factors

Assuming a pile driving analyzer (PDA) is used to monitor pile driving per Section 502 of CDOT (2019), a resistance factor of 0.65 may be used per AASHTO (2020) Table 10.5.5.2.3-1. Section 502.05 of CDOT (2019) stipulates that if PDA is used, a minimum of one PDA monitoring per bridge bent be performed to determine the condition of the pile, efficiency of the hammer, static bearing resistance of the pile, and to establish pile driving criteria. Per AASHTO (2020) recommendations, a resistance factor of 0.5 can be used for wave equation analysis only without pile dynamic measurements such as PDA monitoring. Per AASHTO (2020) recommendations, a resistance factor of 0.75 may be used if a successful static load test is conducted per site condition.

#### 3.3.3 Driven H-Pile Lateral Resistance

The information provided previously in Section 3.2.2 may be used to evaluate H-pile lateral resistance.

#### 3.3.4 General Driven H-Pile Recommendations

The following recommendations are for the design and construction of driven H-piles.

- 1. Based on the results of the field exploration and our experience with similar properly constructed driven pile foundations, it is estimated that settlement will be less than approximately ½ inch when designed according to the criteria presented in this report.
- 2. A minimum spacing requirement for the piles should be three diameters (equivalent) center to center.
- 3. Driven piles should be driven with protective cast steel pile points or equivalent to provide better pile tip seating and to prevent potential damage from coarse soil particles, which may be present at the site.
- 4. A qualified representative of the Contractor's engineer should observe pile-driving activities on a fulltime basis. Piles should be observed and checked for crimping, buckling, and alignment. A record should be kept of embedment depths and penetration resistances for each pile.
- 5. It is estimated that the piles will penetrate approximately 3 to 5 feet into competent bedrock (see Table 1 for the estimated elevation for the top of competent bedrock). The final tip elevations will depend on bedrock conditions encountered during driving.
- 6. If the pile penetration extends below the estimated pile penetration into bedrock by 10 feet or more, the pile driving operations should be temporarily suspended for dynamic monitoring with PDA. We recommend that the subject pile be allowed to rest overnight or longer before restriking and monitoring the beginning-of-restrike with a PDA. The data collected with the PDA shall then be reduced using the software CAPWAP to determine the final nominal pile resistance. The pile driving criteria may be modified by CDOT's or the Contractor's engineer based on the PDA/CAPWAP results.

#### 3.4 CBC Foundation Recommendations

To assure adequate foundation support and to minimize the potential for differential settlement, we recommend that the exposed subgrade soils should be scarified a minimum of 6 inches, moisture conditioned, and re-compacted in accordance with Section 203.07 of the CDOT Standard Specifications (2019) before the placement of structural elements or structural backfill. If unsuitable or soft materials are encountered after the excavation, the materials may be removed and replaced with CDOT Class 1 Structure Backfill in accordance with Section 203.07 of the CDOT Standard Specifications (2019). Visual inspection of the foundation excavations should be performed by a qualified representative of the Geotechnical Engineer of record to identify the quality of the foundation materials prior to placement of backfill and the CBC. Groundwater may be encountered during



excavation for the subgrade preparation. Groundwater control systems may be required to prevent seepage migrating into the construction zone by creating groundwater cut-off and/or dewatering systems.

The recommended nominal bearing resistance using Strength Limit State for the CBC and associated wing walls for both moist and saturated conditions are provided in Table 4. We assume the materials in contact with the bottom of the proposed CBC and wing walls will consist of native clay soils or CDOT Class 1 Structure Backfill placed in accordance with Section 203.07 of the CDOT Standard Specifications (2019). The reduced footing width due to eccentricity can be calculated based on the recommendations in Sections 11.6.3.2 and 11.10.5.4 of AASHTO (2020). A bearing resistance factor of 0.45 may be used for shallow foundations based on the recommendations in Table 10.5.5.2.2-1 of AASHTO (2020).

#### Table 4. Bearing Resistance for CBC and Wing Walls on Shallow Foundation

| Soil Conditions                                                                                                                       | Nominal Bearing Resistance (ksf) <sup>1, 2</sup> |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Moist                                                                                                                                 | 1.7 + 0.8 * B'                                   |
| Saturated                                                                                                                             | 0.9 + 0.4 * B'                                   |
| $^1$ B' is the footing width in feet reduced for eccentricity (e). B $^2$ The calculated nominal bearing resistance is based on a min |                                                  |

The proposed CBC will be at the location of the existing CBC, and as needed, a portion of the CBC will be in a cut area, therefore it is estimated that the total settlement of the structure will be minimal and will occur during construction. The structure settlement is partially controlled by the weight of the adjacent embankment fill. Thus, it is recommended that the embankment fill on both sides of the CBC be placed at a relatively uniform elevation.

Resistance to sliding at the bottom of foundations can be calculated based on a coefficient of friction at the interface between the pre-cast concrete and the existing native soils or compacted CDOT Class 1 Structure Backfill. The recommended nominal coefficients of friction and the corresponding resistance factors for Class 1 Structure Backfill and native soils are provided in Table 5.

| Foundation Soil Type       | Coefficient of Friction | Resistance Factor |
|----------------------------|-------------------------|-------------------|
| Class 1 Structure Backfill | 0.53                    | 0.9               |
| Native Clay                | 0.29                    | 0.8               |

#### Table 5. Coefficients of Friction for CBC and Wing Walls on Shallow Foundation

Backfill adjacent to the CBC should be Class 1 Structure Backfill, compacted with moisture density control. Backfill materials shall have a Class 0 for severity of sulfate exposure. Fill should be tested for severity of sulfate exposure prior to acceptance.

The passive pressure against the sides of the foundation is typically ignored; however, passive resistance can be used if long-term protection from disturbance, such as frost heave, future excavations, etc., is assured. Table 6 presents recommendations for the passive soil resistances for the encountered soil conditions. The passive resistance estimates are calculated from Figure 3.11.5.4-1 in AASHTO (2020) where a portion of the slip surface



is modeled as a logarithmic spiral, the backslope is horizontal and the passive soil/concrete interface friction angle is equal to 60 percent of the soil's friction angle.

The recommended passive earth pressure resistances are presented in terms of an equivalent fluid unit weight for moist and saturated conditions. The recommended passive earth pressure values assume mobilization of the nominal soil/concrete foundation interface shear strength. A suitable resistance factor should be included in the design to limit the strain, which will occur at the nominal shear strength, particularly in the case of passive resistance. The resultant passive earth force, calculated from the equivalent fluid unit weight, should be applied at a point located 1/3 of the height of the soil (in contact with the foundation) above the base of the foundation, directed upward at an angle of 20 degrees from the horizontal.

#### Table 6. Passive Soil Resistance for CBC

|                            | Soil Type | Nominal Resistance | Resistance Factor |
|----------------------------|-----------|--------------------|-------------------|
| Passive Soil<br>Resistance | Moist     | 319 psf/ft         | 0.50              |
|                            | Saturated | 153 psf/ft         | 0.50              |

#### 3.5 Lateral Earth Pressures

External loads used in the analyses of the bridge abutments and wing walls should include earth pressure loads, traffic loads, and any other potential surcharge loads. Typical drainage details consisting of inlets near the abutments, geocomposite strip drains, and perforated pipes shall be included in the design to properly contain and transfer surface and subsurface water without saturating the soil around the abutments.

All abutment and wing wall backfill materials should meet the requirements for CDOT Structure Backfill Class 1 in accordance with CDOT (2019). All backfill adjacent to the abutments and walls shall be placed and compacted in accordance with CDOT (2019). It is recommended that compaction of backfill materials be observed and evaluated by an experienced Contractor's engineer or Contractor's engineer's representative.

A lateral wall movement or rotation of approximately 0.1 to 0.2 percent of the wall height may be required to mobilize active earth pressure for the recommended backfill materials. If the estimated wall movement is less than this amount, an at-rest soil pressure should be used in design. In order to mobilize passive earth pressure, lateral wall movement or rotation of approximately 1.0 to 2.0 percent of the wall height may be required for the recommended backfill materials. It should be carefully considered if this amount of movement can be accepted before passive earth pressure is used in the design.

Earth pressure loading within and along the back of the bridge abutments and wing walls shall be controlled by the structural backfill. We recommend that active, at-rest, and passive lateral earth pressures used for the design of the structures be based on an effective angle of internal friction of 34 degrees, and a unit weight of 135 pounds per cubic foot (pcf) for CDOT Structure Backfill Class 1. The following can be used for design assuming a horizontal backslope:

- Active earth pressure coefficient (k<sub>a</sub>) of 0.28
- Passive earth pressure coefficient  $(k_p)$  of 3.53
- At-rest earth pressure coefficient (k<sub>0</sub>) of 0.44

Lateral earth pressures for a non-horizontal backslope can be estimated using section 3.11 in AASHTO (2020).



#### 3.6 Bridge Scour Parameters

A bulk sample of the creek bed soils/rock below the existing bridge was collected for gradation analysis. The results of the grain size analysis are presented in Appendix C.

#### 4 BRIDGE APPROACH PAVEMENT

Pavement borings were located approximately 250 feet beyond the existing bridge abutments on each side. Prior to drilling, the existing pavement was cored with a 4-inch nominal diameter core barrel. Photos of the pavement core, logs of the subsurface soils/rock, and results of geotechnical and analytical laboratory testing are presented in the appendices. Bulk soil samples were collected from the pavement borings and combined for classification, strength (R-value), and analytical testing. The asphalt pavement thicknesses, aggregate base thicknesses (if present), subgrade soil classifications, and subgrade R-values are presented in Table 7. Analytical test results are presented in Table 8. Preliminary pavement design will be completed by CDOT Staff Materials.

| Boring ID  | Existing Asphalt<br>Concrete<br>Thickness (in) | Aggregate Base<br>Thickness (in) | Subgrade Soil<br>Classification<br>(AASHTO) <sup>1</sup> | R-Value <sup>1</sup> |  |
|------------|------------------------------------------------|----------------------------------|----------------------------------------------------------|----------------------|--|
| O-19-D-P-1 | 9.5                                            | Not Encountered                  | A C (12)                                                 | 12                   |  |
| O-19-D-P-2 | 7.0                                            | Not Encountered                  | A-6 (12)                                                 | 12                   |  |

#### **Table 7. Existing Pavement Section and Subgrade Properties**

1. Subgrade Classification and R-value test results based on combined bulk sample from each pavement boring.

#### **5** ANALYTICAL TEST RESULTS

Analytical testing was completed on representative samples of soils encountered in the borings. The test results can be found in Appendix C and are summarized in Table 8. The Analytical results should be used to select the proper concrete type for the project in accordance with CDOT Standard Specifications (2019). A qualified corrosion engineer should review the laboratory data and boring logs to determine the appropriate level of corrosion protection for materials in contact with these soils.

|                |                  | Table o. Allalyt             | ical rest Results             |     |                        |
|----------------|------------------|------------------------------|-------------------------------|-----|------------------------|
| Boring ID      | Material         | Water Soluble<br>Sulfates, % | Water Soluble<br>Chlorides, % | рН  | Resistivity,<br>ohm-cm |
| O-19-D-P-1/P-2 | Lean Clay (Fill) | 0.403                        | 0.0162                        | -   | -                      |
| 0-19-D-B-1     | Shale            | 0.357                        | 0.0003                        | 7.8 | 578                    |
| 0-19-D-B-2     | Lean Clay        | 1.584                        | 0.0124                        | 8.4 | 76                     |

#### Table 8. Analytical Test Results

#### **6** SEISMIC CONSIDERATIONS

No active faults are known to exist in the immediate vicinity of the proposed bridge location. Based on the site class definitions provided in Table 3.10.3.1-1 of AASHTO LRFD (2020), the site can be categorized as Site Class E. Also based on the recommendations in Table 3.10.6-1 of AASHTO LRFD (2020), the bridge site can be classified as Seismic Zone 1.



The peak ground acceleration (PGA) and the short- and long- period spectral acceleration coefficients ( $S_s$  and  $S_1$ , respectively) for Site Class B (reference site class) were determined using the seismic design maps from the USGS website. The seismic design parameters for Site Class E are shown in Table 9.

| PGA (0.0 sec)            | S <sub>s</sub> (0.2 sec)  | S <sub>1</sub> (1.0 sec)  |  |  |
|--------------------------|---------------------------|---------------------------|--|--|
| 0.061 g                  | 0.126 g                   | 0.037 g                   |  |  |
| A <sub>s</sub> (0.0 sec) | S <sub>DS</sub> (0.2 sec) | S <sub>D1</sub> (1.0 sec) |  |  |
| 0.151 g                  | 0.316 g                   | 0.129 g                   |  |  |

 Table 9. Seismic Design Parameters

#### 7 LIMITATIONS

Our scope of services was performed, and this report was prepared in accordance with generally accepted principles and practices in this area at the time this report was prepared. We make no other warranty, either express or implied.

The classifications, conclusions, and recommendations submitted in this report are based on the data obtained from published and unpublished maps, reports, and geotechnical analyses. Our conclusions and recommendations are based on our understanding of the project as described in this report and the site conditions as interpreted from the explorations. This data may not necessarily reflect variations in the subsurface conditions and water levels occurring at other locations.

The nature and extent of subsurface variations may not become evident until excavation is performed. Variations in the data may also occur with the passage of time. If during construction, fill, soil, rock, or groundwater conditions appear to be different from those described in this report, this office should be advised immediately so we could review these conditions and reconsider our recommendations. If there is a substantial lapse of time between the submission of this report and the start of work at the site, or if conditions have changed because of natural forces or construction operations at or adjacent to the site, we recommend that this report be reviewed to determine the applicability of the conclusions and recommendations concerning the changed conditions or time lapse. We recommend on-site observation of foundation excavations and foundation subgrade conditions by an experienced geotechnical engineer or engineer's representative.

The scope of services of this study did not include hazardous materials sampling or environmental sampling, investigation, or analyses. In addition, we did not evaluate the site for potential impacts to natural resources, including wetlands, endangered species, or environmentally critical areas.



#### 8 **REFERENCES**

AASHTO LRFD, 9<sup>th</sup> Edition. AASHTO Load Resistance Factor Design (LRFD) Bridge Design Specifications, Eight Edition. Washington, DC: American Association of State Highway and Transportation Officials. 2020.

Abu-Hejleh, N., O'Neill, M.W., Hanneman, Dennis, Atwooll, W.J., 2003. Improvement of the Geotechnical Axial Design Methodology for Colorado's Drilled Shafts Socketed in Weak Rocks, Final Report: Colorado Department of Transportation Research Branch, July 2003, Report No. CDOT-DTD-R-2003-6.

Colorado Department of Transportation, 2019. CDOT Standard Specifications for Road and Bridge Construction. 2019 Edition.

Respectfully Submitted, YEH AND ASSOCIATES, INC.

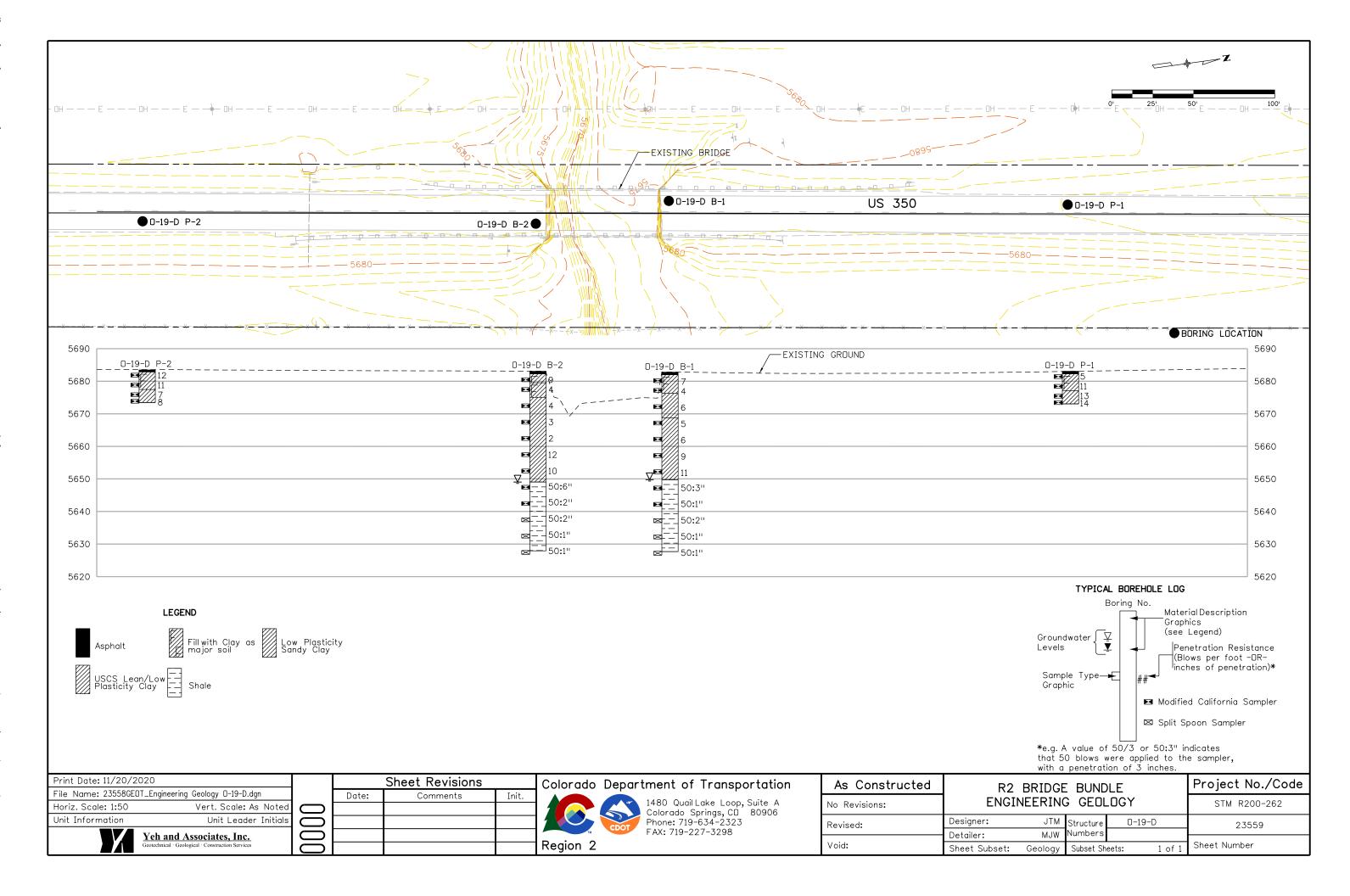
Prepared by:

Cory S. Wallace, EIT, GIT Staff Engineer



Independent Technical Review by:

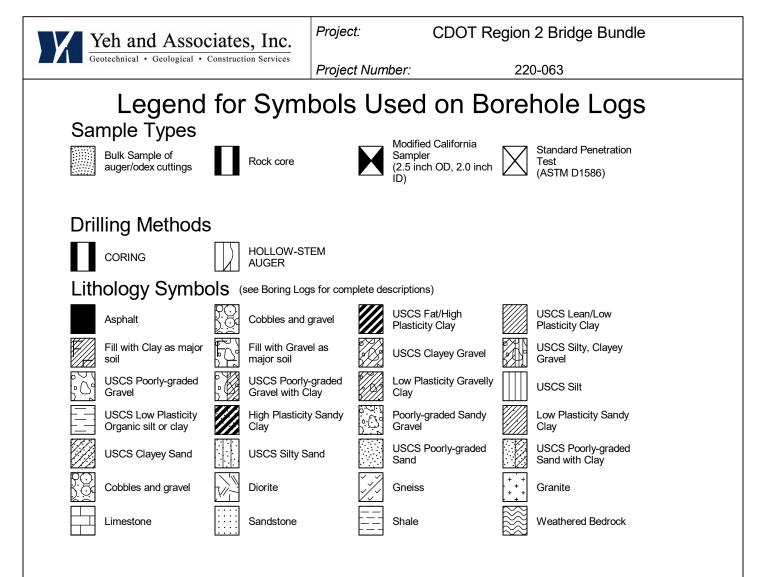
Hsing-Cheng Liu, PE, PhD Senior Project Manager


Attachments: Appendix A Appendix B Appendix C



## **APPENDIX A**

**ENGINEERING GEOLOGY SHEET** 






## **APPENDIX B**

## KEY TO BORING LOGS BORING LOGS PAVEMENT CORE PHOTOS





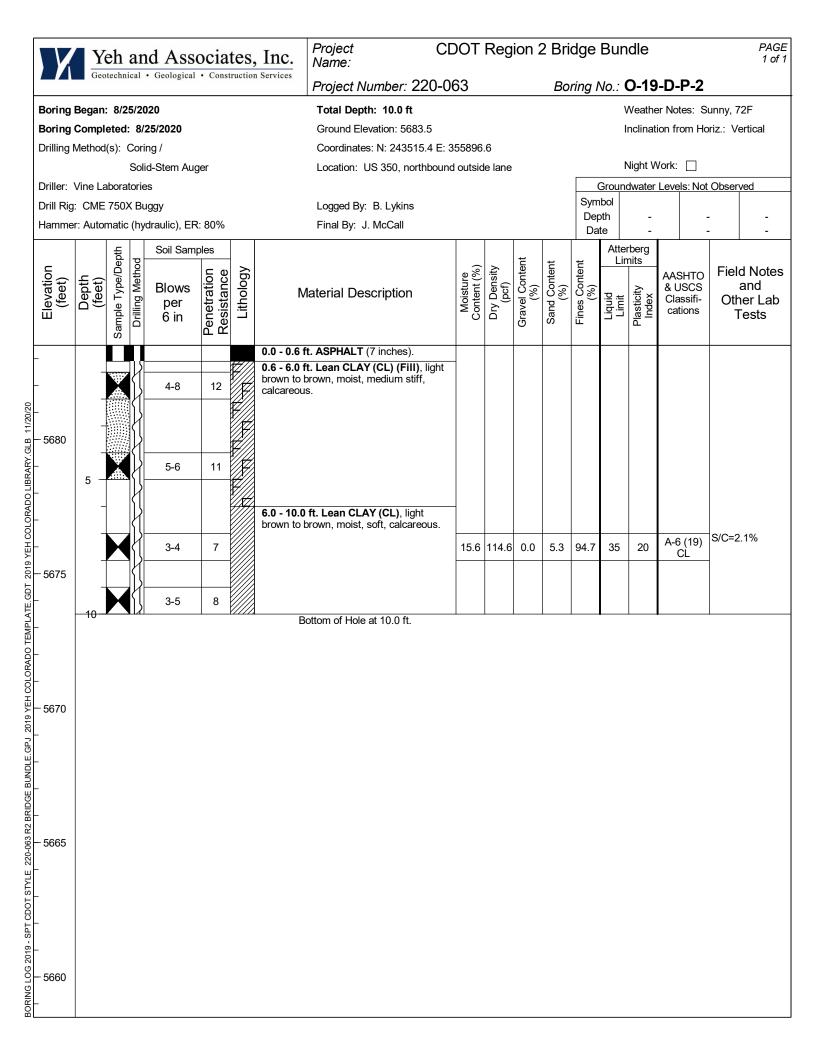
## Lab Test Standards

| Moisture Content     | ASTM D2216               | pН          | Soil pH (AASHTO T2       |
|----------------------|--------------------------|-------------|--------------------------|
| Dry Density          | ASTM D7263               | S           | Water-Soluble Sulfat     |
| Sand/Fines Content   | ASTM D421, ASTM C136,    |             | ASTM D4327)              |
|                      | ASTM D1140               | Chl         | Water-Soluble Chlori     |
| Atterberg Limits     | ASTM D4318               |             | ASTM D4327)              |
| AASHTO Class.        | AASHTO M145,             | S/C         | Swell/Collapse (ASTI     |
|                      | ASTM D3282               | UCCS        | Unconfined Compres       |
| USCS Class.          | ASTM D2487               |             | (Soil - ASTM D2166,      |
| (Fines = % Passing # | #200 Sieve               | R-Value     | Resistance R-Value (     |
| Sand = % Passing #   | 4 Sieve, but not passing | DS (C)      | Direct Shear cohesion    |
| #200 Sieve)          |                          | DS (phi)    | Direct Shear friction a  |
|                      |                          | Re          | Electrical Resistivity ( |
|                      |                          | <b>D</b> (1 | <b>D</b> 1 1 1 01 11 1   |

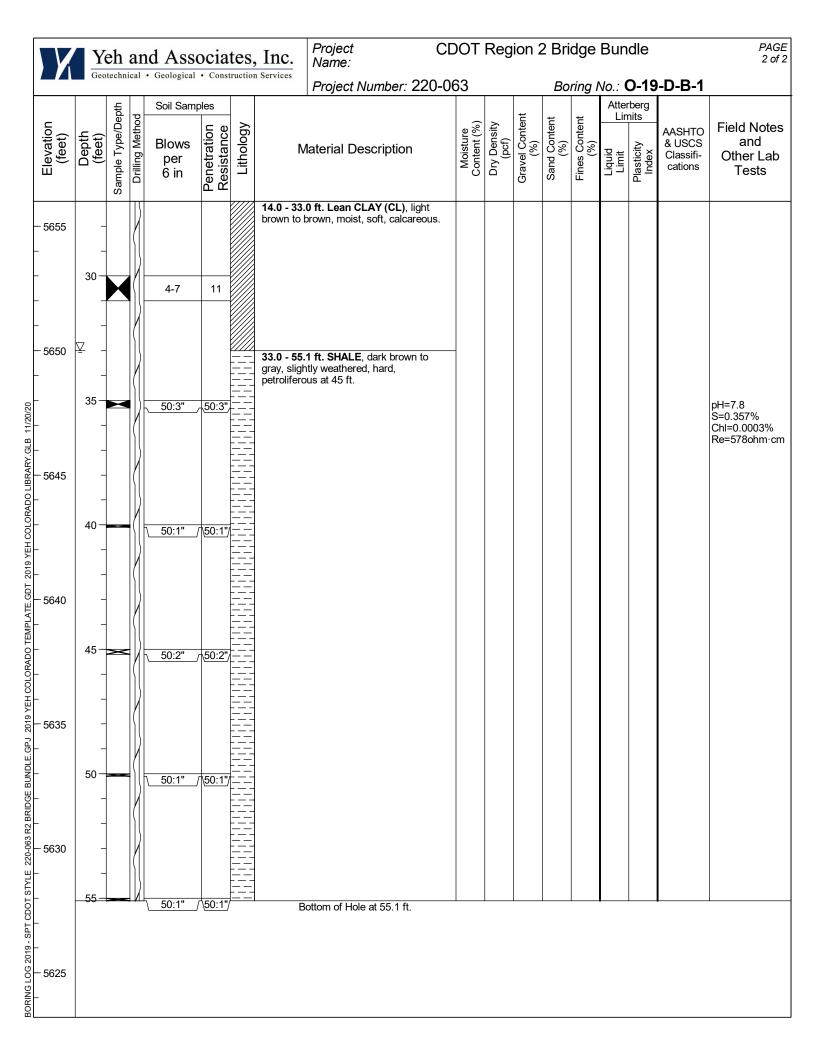
## Other Lab Test Abbreviations

| pН       | Soil pH (AASHTO T289-91)                        |
|----------|-------------------------------------------------|
| S        | Water-Soluble Sulfate Content (AASHTO T290-91,  |
|          | ASTM D4327)                                     |
| Chl      | Water-Soluble Chloride Content (AASHTO T291-91, |
|          | ASTM D4327)                                     |
| S/C      | Swell/Collapse (ASTM D4546)                     |
| UCCS     | Unconfined Compressive Strength                 |
|          | (Soil - ASTM D2166, Rock - ASTM D7012)          |
| R-Value  | Resistance R-Value (ASTM D2844)                 |
| DS (C)   | Direct Shear cohesion (ASTM D3080)              |
| DS (phi) | Direct Shear friction angle (ASTM D3080)        |
| Re       | Electrical Resistivity (AASHTO T288-91)         |
| PtL      | Point Load Strength Index (ASTM D5731)          |
|          |                                                 |

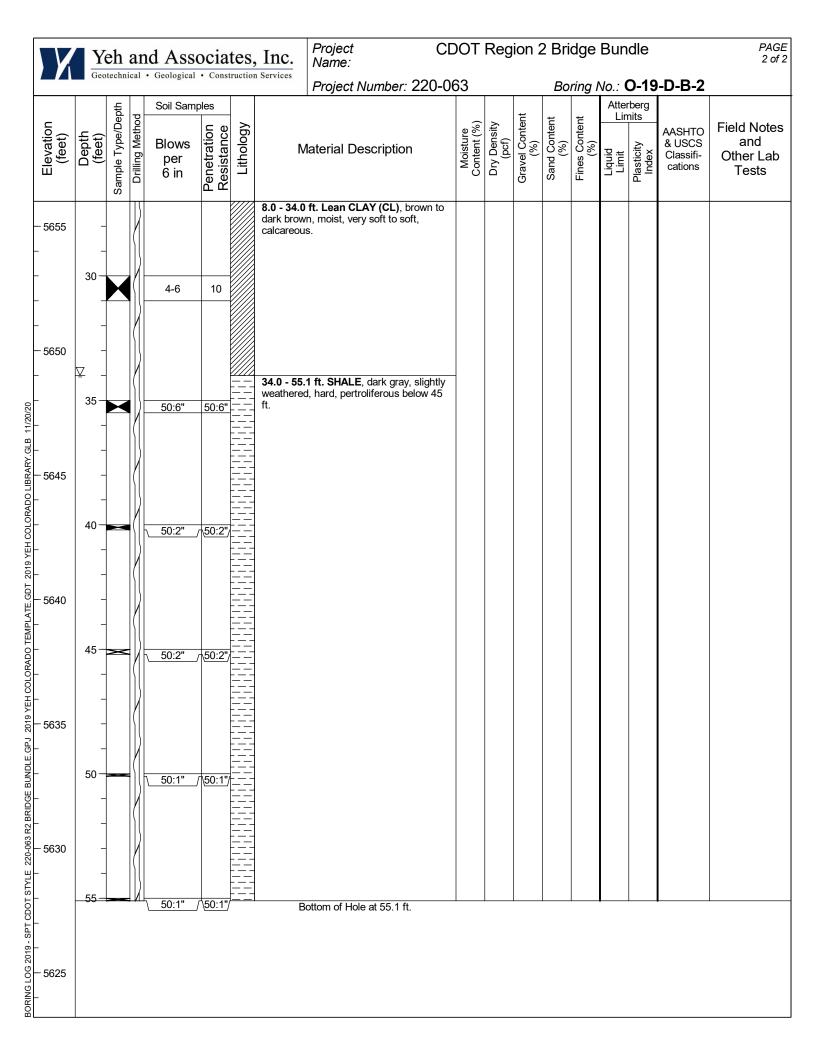
## Notes


1. Visual classifications are in general accordance with ASTM D2488, "Standard Practice for Description and Identification of Soils (Visual-Manual Procedures)".

2. "Penetration Resistance" on the Boring Logs refers to the uncorrected N value for SPT samples only, as per ASTM D1586. For samples obtained with a Modified California (MC) sampler, drive depth is 12 inches, and "Penetration Resistance" refers to the sum of all blows. Where blow counts were > 50 for the 3rd increment (SPT) or 2nd increment (MC), "Penetration Resistance" combines the last and 2nd-to-last blows and lengths; for other increments with > 50 blows, the blows for the last increment are reported.


3. The Modified California sampler used to obtain samples is a 2.5-inch OD, 2.0-inch ID (1.95-inch ID with liners), split-barrel sampler with internal liners, as per ASTM D3550. Sampler is driven with a 140-pound hammer, dropped 30 inches per blow.

4. "ER" for the hammer is the Reported Calibrated Energy Transfer Ratio for that specific hammer, as provided by the drilling company.


| Boring Began:     8/25/2020     Total Depth:     10.0 ft     Weather Notes:     Sunny, 6       Boring Completed:     8/25/2020     Ground Elevation:     5680     Inclination from Horiz.:     V       Drilling Method(s):     Coring /     Coordinates:     N:     244079.7 E:     355962.4     Inclination from Horiz.:     V       Driller:     Vine Laboratories     Solid-Stem Auger     Location:     US 350, southbound outside lane     Night Work:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Boring No.: O-19-D-P-1     |                     |                     | Project Number: 220-063 | tructio            | • Const              | d Asso<br>Geological   | hnical •                                      | Geotech   |                           |                      |               |                         |          |                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------|---------------------|-------------------------|--------------------|----------------------|------------------------|-----------------------------------------------|-----------|---------------------------|----------------------|---------------|-------------------------|----------|----------------------|
| borng Complete:     28232202     Grand Elevation: 5683     International Procession 2011     International Procession 2011       Difference     Control With 244070     Elevation: 5083     Scottable 21     International Procession 2011     International Procession 2011       Difference     Control With 244070     Control With 244070     Control With 244070     International Procession 2011     International Procession 2011     International Procession 2011       Difference     Control With 244070     Control With 244070     Control With 244070     International Procession 2011     International Procession 2011       Difference     Control With 244070     Final By: J. McCall     International Procession 2011     International Procession 2011       Difference     Scottable Procession 2011     Difference     Difference     International Procession 2011       Difference     Scottable Procession 2011     Difference     Difference     International Procession 2011       Difference     Scottable Procession 2011     Difference     Difference     International Procession 2011       Difference     Scottable Procession 2011     Difference     Difference     International Procession 2011       Difference     Scottable Procession 2011     Difference     Difference     Difference       Scottable Procession 2011     Difference     Difference     Difference     Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                     |                     |                         | ing i              | 001                  |                        | •                                             |           |                           | 20                   | 8/25/20       | an <sup>.</sup> 8       | 1 Be     | Boring               |
| Willing Method(s): Coring / Side Sem Auger       Coordinates: N: 244079.7 E: 355962.4       International Side Sem Auger       Location: US 350, southbound outside lane       International Side Sem Auger         Will King: CME 750X Baggy       Logaed By: B. Lykins       Stronged Method Side Sem Auger       Stronged Method Side Sem Auger       Stronged Method Side Sem Auger         uigged By: B. Lykins       Final By: J. McCall       Stronged Method Side Sem Auger       Stronged Method Side Sem Auger       Stronged Method Side Sem Auger         uigged By: B. Lykins       Final By: J. McCall       Stronged Method Side Sem Auger       Stronged Method Side Sem Auger       Stronged Method Side Sem Auger         uigged By: B. Lykins       Final By: J. McCall       Stronged Method Side Sem Auger         uigged By: B. Lykins       Final By: J. McCall       Stronged Method Side Sem Auger         uigged By: B. Lykins       Stronged Method Side Sem Auger       Stronged Method Side Sem Auger       Stronged Method Side Sem Auger       Stronged Method Sem Auger       Stronged Method Sem Auger         uigged By: B. Lykins       Stronged Method Sem Auger       Stronged Method Sem Auger       Stronged Method Sem Auger       Stronged Method Sem Auger         Sem Auger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                          |                     |                     |                         |                    |                      |                        |                                               |           |                           |                      |               |                         | -        | -                    |
| Solid-Stem Auger     Location: US 350, southbound outside lans     Implifying Characterises       Differ: CMER SDR Bugy     Lagged By: B. Lydins     Symbol     Symbol     Implifying Characterises       Umplifying Characterises     Implifying Characterises     Implifying Characterises     Implifying Characterises       Solid     Implifying Characterises     Implifying Characterises     Implifying Characterises     Implifying Characterises       Solid     Implifying Characterises     Implifying Characterises     Implifying Characterises     Implifying Characterises       Solid     Implifying Characterises     Implifying Characterises     Implifying Characterises     Implifying Characterises       So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                     | lonnati             |                         |                    |                      |                        |                                               |           |                           |                      |               |                         |          | -                    |
| Selection       Groundwater Levels: Not Observations         Sample: Automatic (hydraulic), Ets 80%       Logged By: B. Lykins         Final By: J. McCall       Samples         Soli Samples       Material Description         Soli Samples       Not Call         Soli Samples       0.0 - 0.8 ft ASPHALT (9.5 inches).         Calcons       0.0 - 0.8 ft ASPHALT (9.5 inches).         Soli Samples       0.0 - 0.8 ft ASPHALT (9.5 inches).         Soli Samples       0.0 - 0.8 ft ASPHALT (9.5 inches).         Soli Samples       Soli Samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | с П                        | Vork: 🗌             | light W             | Ν                       |                    |                      |                        |                                               |           | ıer                       | -                    |               | iou(o).                 | , 1110   | 2 mining             |
| Mil Rig: CME 750X Buggy         Logged By: B. Lykins         Bythin Logged By: B. Lykins         Bythin Logged By: B. Lykins           000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                     | -                   |                         | (                  |                      |                        |                                               |           | ,01                       | •                    |               | Labo                    | Vin      | Driller <sup>.</sup> |
| fammer: Automatic (hydraulic), ER: 80%     Final By: J. McCall     Depter<br>Biological     Soil Samples<br>biological     Material Description     Depter<br>Biological     Attribute<br>Biological     Attribute                                                                                                                                                                                                                                                                                                                                                             |                            |                     | arrato.             |                         |                    |                      |                        | Logged By: B Lykins                           |           |                           |                      |               |                         |          |                      |
| Soil Sumples         Soil Sumples         Material Description         Bit of the soil o                   |                            |                     | -                   |                         |                    |                      |                        |                                               |           | : 80%                     |                      |               |                         | -        |                      |
| Explosition         Image: Second |                            |                     | -                   |                         | Dat                |                      |                        | · · · · · · · · · · · · · · · · · · ·         |           |                           |                      |               |                         | <u> </u> |                      |
| 5680         2.3         5         0.0         0.0         6.0         6.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0 <td></td> <td></td> <td></td> <td></td> <td>ut</td> <td>、  </td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>enth</td> <td></td> <td>_</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                     |                     |                         | ut                 | 、                    | _                      |                                               |           |                           |                      |               | enth                    |          | _                    |
| 5680                2.3 5               0.8 - 6.0 ft. Lean CLAY (CL) (Fill), light brown to             town, moist, medium stiff.               18.5 109.2 97.2 32 16 A-6 (15)               SiC=1            5675              5-8 13               6.0 - 10.0 ft. Lean CLAY (CL), brown, moist, soft to               I8.5 109.2 97.2 32 16 A-6 (15)               SiC=1            5675              5-9 14               Bottom of Hole at 10.0 ft.               Ia.5 109.2 97.2 32 16 A-6 (15)               SiC=1            5676                5-9 14               Bottom of Hole at 10.0 ft.               Ia.5 109.2 97.2 32 16 A-6 (15)               SiC=1            5676                Soltom of Hole at 10.0 ft.               Ia.5 109.2 97.2 32 16 A-6 (15)               SiC=1            5670                Bottom of Hole at 10.0 ft.               Ia.5               Ia.5            5670                    Ia.5               Ia.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | USCS and lassifi- Other La | & USCS<br>Classifi- | Plasticity<br>Index | Liquid<br>Limit         | Fines Conte<br>(%) | Dry Density<br>(pcf) | Moisture<br>Content (% | Material Description                          | Lithology | Penetration<br>Resistance | Blows<br>per<br>6 in | Drilling Meth | (teet)<br>Samnle Tvne/F | Depth    | Elevatior<br>(feet)  |
| 5680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                     |                     |                         |                    |                      |                        | 8 ft. ASPHALT (9.5 inches).                   |           |                           |                      |               |                         |          |                      |
| 5680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                     |                     |                         |                    |                      |                        | 0 ft. Lean CLAY (CL) (Fill), light brown to   | ¢///      |                           |                      | <b>.</b>      |                         |          |                      |
| 5675       4.7       11         6675       6.0 - 10.0 ft. Lean CLAY (CL), brown, moist, soft to medium stiff, calcareous.       18.5       109.2       97.2       32       16       A-6 (15)       S/C=1         5675       5-8       13       5-9       14       Bottom of Hole at 10.0 ft.       10.0 ft.         5670       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                     |                     |                         |                    |                      |                        | moist, medium stiff.                          |           | 5                         | 2-3                  |               |                         |          |                      |
| 5675       4.7       11         6675       6.0 - 10.0 ft. Lean CLAY (CL), brown, moist, soft to medium stiff, calcareous.       18.5       109.2       97.2       32       16       A-6 (15)       S/C=1         5675       5-8       13       5-9       14       Bottom of Hole at 10.0 ft.       10.0 ft.         5670       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665       5665<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                     |                     |                         |                    |                      |                        |                                               |           |                           |                      |               |                         |          |                      |
| 5     4-7     11       6.0 - 10.0 ft. Lean CLAY (CL), brown, moist, soft to       medium stiff, calcareous.       5-8     13       5-9     14   Bottom of Hole at 10.0 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                     |                     |                         |                    |                      |                        |                                               |           |                           |                      | K             | -                       |          | 5680                 |
| 5     4.7     11       60-10.0 ft. Lean CLAY (CL), brown, moist, soft to       medium stiff, calcareous.       60-10.0 ft.   Bottom of Hole at 10.0 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6 (15) S/C=1.7%            | A C (45)            |                     |                         |                    |                      |                        |                                               |           |                           |                      |               |                         |          |                      |
| 5675         6.0 - 10.0 ft. Lean CLAY (CL), brown, moist, soft to medium stiff, calcareous.           5676         5-8         13           0         5-9         14           Bottom of Hole at 10.0 ft.         5670           5676         5665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0(13)                     | A-6 (15)<br>CL      | 16                  | 32                      | 97.2               | 109.2                | 18.5                   |                                               |           | 11                        | 4-7                  |               |                         |          |                      |
| 5675     13     medium stiff, calcareous.       10     5-8       10     Bottom of Hole at 10.0 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                     |                     |                         |                    |                      |                        |                                               |           |                           |                      |               |                         |          |                      |
| 5675     13     medium stiff, calcareous.       10     5-8       10     Bottom of Hole at 10.0 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                     |                     |                         |                    |                      |                        | 0.0 ft. Lean CLAY (CL), brown, moist, soft to |           |                           |                      | {l            | -                       |          |                      |
| 5675 5.9 14 Bottom of Hole at 10.0 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                     |                     |                         |                    |                      |                        | n stiff, calcareous.                          |           |                           |                      | _{            |                         |          |                      |
| 5670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                     |                     |                         |                    |                      |                        |                                               |           | 13                        | 5-8                  | <b>4</b> 81   |                         |          |                      |
| 10     Bottom of Hole at 10.0 ft.       5670     5665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                     |                     |                         |                    |                      |                        |                                               |           |                           |                      | <b>-</b> ]}}  | 1                       |          | 5675                 |
| 10     Bottom of Hole at 10.0 ft.       5670     5665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                     |                     |                         |                    |                      |                        |                                               |           |                           |                      | ┛╟            |                         |          |                      |
| 5670 5665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                     |                     |                         |                    |                      |                        |                                               |           | 14                        | 5-9                  |               | , <b>/</b>              |          |                      |
| 5665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                     |                     |                         |                    |                      |                        | Bottom of Hole at 10.0 ft.                    |           |                           |                      |               | ,                       |          |                      |
| 5665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                     |                     |                         |                    |                      |                        |                                               |           |                           |                      |               |                         |          |                      |
| 5665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                     |                     |                         |                    |                      |                        |                                               |           |                           |                      |               |                         |          |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                     |                     |                         |                    |                      |                        |                                               |           |                           |                      |               |                         |          | 5670                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                     |                     |                         |                    |                      |                        |                                               |           |                           |                      |               |                         |          |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                     |                     |                         |                    |                      |                        |                                               |           |                           |                      |               |                         |          |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                     |                     |                         |                    |                      |                        |                                               |           |                           |                      |               |                         |          |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                     |                     |                         |                    |                      |                        |                                               |           |                           |                      |               |                         |          |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                     |                     |                         |                    |                      |                        |                                               |           |                           |                      |               |                         |          |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                     |                     |                         |                    |                      |                        |                                               |           |                           |                      |               |                         |          |                      |
| 5660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                     |                     |                         |                    |                      |                        |                                               |           |                           |                      |               |                         |          | 5665                 |
| 5660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                     |                     |                         |                    |                      |                        |                                               |           |                           |                      |               |                         |          |                      |
| 5660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                     |                     |                         |                    |                      |                        |                                               |           |                           |                      |               |                         |          |                      |
| 5660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                     |                     |                         |                    |                      |                        |                                               |           |                           |                      |               |                         |          |                      |
| 5660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                     |                     |                         |                    |                      |                        |                                               |           |                           |                      |               |                         |          |                      |
| 5660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                     |                     |                         |                    |                      |                        |                                               |           |                           |                      |               |                         |          |                      |
| 5660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                     |                     |                         |                    |                      |                        |                                               |           |                           |                      |               |                         |          |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                     |                     |                         |                    |                      |                        |                                               |           |                           |                      |               |                         |          | 5660                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                     |                     |                         |                    |                      |                        |                                               |           |                           |                      |               |                         |          |                      |



|                     | Geo             | techni            | cal •            | d Ass<br>Geological           | • Const                   | ruction        | , IIIC.<br><sup>n Services</sup> Name:<br>Project Number: 220.0                        | 63                      |                      |                       | D-                  | ring                 |                 | ∩ 4∩                |                                          | 1 of                      |
|---------------------|-----------------|-------------------|------------------|-------------------------------|---------------------------|----------------|----------------------------------------------------------------------------------------|-------------------------|----------------------|-----------------------|---------------------|----------------------|-----------------|---------------------|------------------------------------------|---------------------------|
|                     | _               |                   |                  |                               |                           |                | Project Number: 220-0                                                                  | 03                      |                      |                       | BO                  | ring i               |                 |                     | )-D-B-1                                  |                           |
| -                   | Began           |                   |                  |                               |                           |                | Total Depth: 55.1 ft                                                                   |                         |                      |                       |                     |                      |                 |                     | er Notes: Su                             | -                         |
| -                   |                 |                   |                  | 2 <b>5/2020</b><br>pw-Stem Au | laor                      |                | Ground Elevation: 5683<br>Coordinates: N: 243837.3 E: 3                                | 255027                  | 1                    |                       |                     |                      | I               | ncinal              |                                          | riz.: Vertical            |
| -                   | Vine La         |                   |                  |                               | igei                      |                | Location: US 350, southboun                                                            |                         |                      | <b>`</b>              |                     |                      | ı               | Niaht V             | Vork: 🗌                                  |                           |
|                     | : CME           |                   |                  |                               |                           |                |                                                                                        | u outsi                 |                      |                       |                     |                      |                 | -                   | undwater Le                              | vels:                     |
|                     |                 |                   |                  | draulic), ER                  | : 80%                     |                | Logged By: B. Lykins                                                                   |                         |                      |                       |                     | Sym                  | nbol            | <br>⊻               |                                          |                           |
|                     |                 |                   |                  | ,-                            |                           |                | Final By: J. McCall                                                                    |                         |                      |                       |                     | Dep<br>Da            |                 | 33.0<br>8/25/       |                                          | -                         |
|                     |                 | ÷                 |                  | Soil Sam                      | oles                      |                |                                                                                        |                         |                      |                       |                     |                      | <b></b> _       | rberg               |                                          |                           |
| 5                   |                 | Dept              | poq              |                               |                           | N              |                                                                                        |                         | ity                  | tent                  | ent                 | ent                  |                 | nits                |                                          | Field Note                |
| Elevation<br>(feet) | Depth<br>(feet) | Sample Type/Depth | Drilling Method  | Blows<br>per<br>6 in          | Penetration<br>Resistance | Lithology      | Material Description                                                                   | Moisture<br>Content (%) | Dry Density<br>(pcf) | Gravel Content<br>(%) | Sand Content<br>(%) | Fines Content<br>(%) | Liquid<br>Limit | Plasticity<br>Index | AASHTO<br>& USCS<br>Classifi-<br>cations | and<br>Other Lat<br>Tests |
|                     |                 |                   |                  |                               |                           |                | 0.0 - 0.8 ft. ASPHALT (10 inches).                                                     |                         |                      |                       |                     |                      |                 |                     |                                          |                           |
|                     | -               |                   | $ \mathbf{M} $   |                               |                           | \$ <b> </b> // | 0.8 - 6.5 ft. Lean CLAY (CL) (Fill), light                                             | 1                       |                      |                       |                     |                      |                 |                     |                                          |                           |
|                     | -               |                   | )  -             |                               |                           |                | brown, moist, soft.                                                                    |                         |                      |                       |                     |                      |                 |                     |                                          |                           |
| 5680                | _               |                   |                  | 3-4                           | 7                         | <i>\  </i>     |                                                                                        |                         |                      |                       |                     |                      |                 |                     |                                          |                           |
|                     |                 |                   |                  |                               |                           | X              |                                                                                        |                         |                      |                       |                     |                      |                 |                     |                                          |                           |
|                     | _               |                   |                  |                               |                           | $\mathbf{F}$   |                                                                                        |                         |                      |                       |                     |                      |                 |                     |                                          |                           |
|                     | 5 -             |                   |                  | 2-2                           | 4                         | X              |                                                                                        |                         |                      |                       |                     |                      |                 |                     |                                          |                           |
|                     | -               |                   |                  |                               |                           |                |                                                                                        |                         |                      |                       |                     |                      |                 |                     |                                          |                           |
|                     | -               | -                 | M                |                               |                           |                | 6.5 - 14.0 ft. Sandy lean CLAY (CL),<br>light brown, moist, soft.                      | 1                       |                      |                       |                     |                      |                 |                     |                                          |                           |
| 5675                | -               |                   |                  |                               |                           |                |                                                                                        |                         |                      |                       |                     |                      |                 |                     |                                          |                           |
|                     |                 |                   | W.               |                               |                           |                |                                                                                        |                         |                      |                       |                     |                      |                 |                     |                                          |                           |
|                     |                 |                   |                  |                               |                           |                |                                                                                        |                         |                      |                       |                     |                      |                 |                     |                                          |                           |
|                     | 10-             |                   |                  | 3-3                           | 6                         |                |                                                                                        | 11.7                    | 110.6                | -                     | 46.1                | 53.9                 | 27              | 11                  | A-6 (3)                                  |                           |
|                     | -               |                   | $ \langle  $     |                               |                           |                |                                                                                        |                         |                      | -                     | -                   |                      |                 |                     | CL                                       |                           |
|                     | -               | -                 |                  |                               |                           |                |                                                                                        |                         |                      |                       |                     |                      |                 |                     |                                          |                           |
| 5670                | -               | -                 |                  |                               |                           |                |                                                                                        |                         |                      |                       |                     |                      |                 |                     |                                          |                           |
|                     | _               |                   |                  |                               |                           |                |                                                                                        |                         |                      |                       |                     |                      |                 |                     |                                          |                           |
|                     | 1-              |                   | $ \mathbf{M} $   |                               |                           |                | <b>14.0 - 33.0 ft. Lean CLAY (CL)</b> , light brown to brown, moist, soft, calcareous. |                         |                      |                       |                     |                      |                 |                     |                                          |                           |
|                     | 15-             |                   | ) [†             | 2-3                           | 5                         |                |                                                                                        |                         |                      |                       |                     |                      |                 |                     |                                          |                           |
|                     | -               |                   | IV:              |                               |                           |                |                                                                                        |                         |                      |                       |                     |                      |                 |                     |                                          |                           |
|                     | -               | -                 |                  |                               |                           |                |                                                                                        |                         |                      |                       |                     |                      |                 |                     |                                          |                           |
| 5665                |                 | -                 |                  |                               |                           |                |                                                                                        |                         |                      |                       |                     |                      |                 |                     |                                          |                           |
|                     | _               |                   |                  |                               |                           |                |                                                                                        |                         |                      |                       |                     |                      |                 |                     |                                          |                           |
|                     |                 |                   |                  |                               |                           |                |                                                                                        |                         |                      |                       |                     |                      |                 |                     |                                          |                           |
|                     | 20-             |                   | INT              | 3-3                           | 6                         |                |                                                                                        |                         |                      |                       |                     |                      |                 |                     |                                          |                           |
|                     | -               |                   | )  +             |                               |                           |                |                                                                                        |                         |                      |                       |                     |                      |                 |                     |                                          |                           |
|                     | -               |                   | $\ \mathbf{y}\ $ |                               |                           |                |                                                                                        |                         |                      |                       |                     |                      |                 |                     |                                          |                           |
| 5660                |                 | -                 |                  |                               |                           |                |                                                                                        |                         |                      |                       |                     |                      |                 |                     |                                          |                           |
|                     | _               |                   |                  |                               |                           |                |                                                                                        |                         |                      |                       |                     |                      |                 |                     |                                          |                           |
|                     | 0.5             |                   | $ \langle   $    |                               |                           |                |                                                                                        |                         |                      |                       |                     |                      |                 |                     |                                          |                           |
|                     | 25-             |                   | }[               | 4-5                           | 9                         |                |                                                                                        |                         |                      |                       |                     |                      |                 |                     |                                          |                           |
|                     | -               |                   | IИН              |                               |                           |                |                                                                                        | 1                       |                      |                       |                     |                      |                 |                     |                                          |                           |



| oring Begar         oring Comp         rilling Method         riller: Vine L         (feet)         5680         5675         5675         5677         56670         10-         56670         10-         56665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (feet)                  | eted:<br>s): H<br>borato<br>750X<br>natic ( | 8/25<br>lollow<br>bries<br>Bugg<br>(hydra | / <b>2020</b><br>-Stem Au<br>9y                                           | 80%                         | Lithology | Project Number: 220-06         Total Depth: 55.1 ft         Ground Elevation: 5683         Coordinates: N: 243754.5 E: 33         Location: US 350, northbound         Logged By: B. Lykins         Final By: J. McCall         Material Description         0.0 - 0.8 ft. ASPHALT (8 inches).         0.8 - 3.5 ft. Sandy lean CLAY (CL) (Fill), | 55930                   |                      |                      | Sand Content (%)  | Fines Content<br>(%) Part Content | V<br>II<br>bol<br>bth<br>te<br>Lin | Veathen<br>nclinat<br>Vight V<br>Grow<br>V<br>34.0<br>8/25/2<br>rberg<br>nits | Vork:<br>undwater Le<br>ft<br>20<br>AASHTO<br>& USCS                | evels:                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------|-----------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|----------------------|-------------------|-----------------------------------|------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------|
| oring Comp         rilling Method         riller: Vine L         (feet)         56670         56670         56670         56670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (feet)                  | eted:<br>s): H<br>borato<br>750X<br>natic ( | 8/25<br>Iollow<br>bries<br>Bugg<br>(hydra | /2020<br>-Stem Au<br>y<br>aulic), ER<br>Soil Samp<br>Blows<br>per<br>6 in | Penetration 30 %08          | Lithology | Ground Elevation: 5683<br>Coordinates: N: 243754.5 E: 33<br>Location: US 350, northbound<br>Logged By: B. Lykins<br>Final By: J. McCall<br>Material Description<br>0.0 - 0.8 ft. ASPHALT (8 inches).                                                                                                                                              | outsid                  | le lane              |                      | nd Content (%)    | Dep<br>Da                         | bol<br>oth<br>te<br>Lin            | Inclinat<br>Night V<br>Gron<br>∑<br>34.0<br>8/25/2<br>rberg<br>nits           | ion from Hc<br>Vork:<br>undwater Le<br>ft<br>20<br>AASHTO<br>& USCS | evels:                              |
| rilling Method<br>riller: Vine L<br>rill Rig: CME<br>ammer: Auto<br>(feet)<br>56680<br>55 -<br>56675<br>10 -<br>56670<br>10 -<br>56670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (feet) (feet)           | s): H<br>borato<br>750X<br>natic (          | lollow<br>pries<br>Bugg<br>(hydra         | -Stem Au<br>Jy<br>aulic), ER<br>Soil Samp<br>Blows<br>per<br>6 in         | Penetration 30 %08          | Lithology | Coordinates: N: 243754.5 E: 3<br>Location: US 350, northbound<br>Logged By: B. Lykins<br>Final By: J. McCall<br>Material Description<br>0.0 - 0.8 ft. ASPHALT (8 inches).                                                                                                                                                                         | outsid                  | le lane              |                      | nd Content<br>(%) | Dep<br>Da                         | bol<br>oth<br>te<br>Lin            | Jight V<br>Groi<br>⊻<br>34.0<br>8/25/:<br>rberg<br>nits                       | Vork:<br>undwater Le<br>ft<br>20<br>AASHTO<br>& USCS                | evels:<br><br><br>Field Note<br>and |
| riller: Vine L<br>rill Rig: CME<br>ammer: Auto<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(199)<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>(19))<br>( | e Lal<br>ME uton (teet) | borato<br>750X<br>natic (                   | bries<br>Bugg<br>(hydra                   | aulic), ER<br>Soil Samp<br>Blows<br>per<br>6 in                           | Penetration 30 %08          | Lithology | Location: US 350, northbound<br>Logged By: B. Lykins<br>Final By: J. McCall<br>Material Description<br>0.0 - 0.8 ft. ASPHALT (8 inches).                                                                                                                                                                                                          | outsid                  | le lane              |                      | nd Content<br>(%) | Dep<br>Da                         | bol<br>oth<br>te<br>Atter<br>Lin   | <u>Gro</u><br>∑<br>34.0<br>8/25/2<br>rberg<br>nits                            | t<br>4ASHTO<br>& USCS                                               | Field Note                          |
| rill Rig: CME<br>ammer: Auto<br>(teet)<br>56675<br>56670<br>56670<br>10-<br>56670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | motu (feet)             | 750X<br>natic (                             | Bugg<br>(hydra                            | aulic), ER<br>Soil Samp<br>Blows<br>per<br>6 in                           | Penetration 🖗<br>Resistance | Lithology | Logged By: B. Lykins<br>Final By: J. McCall<br>Material Description<br>0.0 - 0.8 ft. ASPHALT (8 inches).                                                                                                                                                                                                                                          |                         |                      |                      | nd Content<br>(%) | Dep<br>Da                         | bol<br>oth<br>te<br>Atter<br>Lin   | <u>Gro</u><br>∑<br>34.0<br>8/25/2<br>rberg<br>nits                            | t<br>4ASHTO<br>& USCS                                               | Field Note                          |
| ammer: Auto<br>(ion (i))<br>5680<br>5675<br>5675<br>10 -<br>5670<br>10 -<br>10 -<br>5670<br>10 -<br>10 -<br>5670<br>10 -<br>10 -<br>5670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (feet)                  | natic (                                     | (hydra                                    | aulic), ER<br>Soil Samp<br>Blows<br>per<br>6 in                           | Penetration 🖗<br>Resistance | Lithology | Final By: J. McCall<br>Material Description<br>0.0 - 0.8 ft. ASPHALT (8 inches).                                                                                                                                                                                                                                                                  | Moisture<br>Content (%) | Dry Density<br>(pcf) | ravel Content<br>(%) | nd Content<br>(%) | Dep<br>Da                         | oth<br>te<br>Atter<br>Lin          | ∑<br>34.0<br>8/25/2<br>rberg<br>nits                                          | ft -<br>20 -<br>AASHTO<br>& USCS                                    | Field Note                          |
| Debth<br>(feet)<br>56675<br>10-<br>56670<br>10-<br>10-<br>10-<br>10-<br>10-<br>10-<br>10-<br>10-<br>10-<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (feet)                  |                                             |                                           | Soil Samp<br>Blows<br>per<br>6 in                                         | Penetration 🖗<br>Resistance | Lithology | Final By: J. McCall<br>Material Description<br>0.0 - 0.8 ft. ASPHALT (8 inches).                                                                                                                                                                                                                                                                  | Moisture<br>Content (%) | Dry Density<br>(pcf) | ravel Content<br>(%) | nd Content<br>(%) | Da                                | te<br>Atter<br>Lin                 | 8/25/:<br>rberg<br>nits                                                       | 20<br>AASHTO<br>& USCS                                              | and                                 |
| 5680 -<br>5680 -<br>5675 -<br>5675 -<br>5670 -<br>5670 -<br>10 -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | Sample Type/Depth                           |                                           | Blows<br>per<br>6 in                                                      | Penetration<br>Resistance   | Lithology | Material Description 0.0 - 0.8 ft. ASPHALT (8 inches).                                                                                                                                                                                                                                                                                            | Moisture<br>Content (%) | Dry Density<br>(pcf) | ravel Content<br>(%) | nd Content<br>(%) |                                   | Atter<br>Lin                       | rberg<br>nits                                                                 | AASHTO<br>& USCS                                                    | and                                 |
| 5680 -<br>5680 -<br>5675 -<br>5675 -<br>5670 -<br>5670 -<br>10 -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | Sample Type/Depth                           |                                           | Blows<br>per<br>6 in                                                      | Penetration<br>Resistance   | Lithology | 0.0 - 0.8 ft. ASPHALT (8 inches).                                                                                                                                                                                                                                                                                                                 | Moisture<br>Content (%) | Dry Density<br>(pcf) | ravel Content<br>(%) | nd Content<br>(%) | s Content<br>(%)                  | Lin                                | nits                                                                          | & USCS                                                              | and                                 |
| 5680 -<br>5680 -<br>5675 -<br>5675 -<br>5670 -<br>5670 -<br>10 -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | Sample Type/D                               | Drilling Meth                             | per<br>6 in                                                               |                             | Lithology | 0.0 - 0.8 ft. ASPHALT (8 inches).                                                                                                                                                                                                                                                                                                                 | Moisture<br>Content (%  | Dry Density<br>(pcf) | ravel Conte<br>(%)   | nd Contei<br>(%)  | s Conte<br>(%)                    | uid<br>nit                         | icity<br>ex                                                                   | & USCS                                                              | and                                 |
| 5675<br>5675<br>5670<br>5670<br>10-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                                             |                                           | 5-4                                                                       |                             |           |                                                                                                                                                                                                                                                                                                                                                   |                         |                      | Ō                    | Sa                | Fine                              | Liquid<br>Limit                    | Plasticity<br>Index                                                           | Classifi-<br>cations                                                | Other Lab<br>Tests                  |
| 5675<br>5675<br>5670<br>5670<br>10-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                                             |                                           | 5-4                                                                       | 9                           |           | 0.8 - 3.5 ft Sandy Jean CLAY (CL) (Fill)                                                                                                                                                                                                                                                                                                          |                         |                      |                      |                   |                                   |                                    |                                                                               |                                                                     |                                     |
| 5675<br>5675<br>5670<br>5670<br>10-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                                             |                                           | 5-4                                                                       | 9                           |           |                                                                                                                                                                                                                                                                                                                                                   | 1                       |                      |                      |                   |                                   |                                    |                                                                               |                                                                     |                                     |
| 5675<br>5675<br>5670<br>5670<br>10-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                                             |                                           | 5-4                                                                       | 9                           |           | with trace gravel, brown, moist, medium stiff.                                                                                                                                                                                                                                                                                                    |                         |                      |                      |                   |                                   |                                    |                                                                               |                                                                     |                                     |
| 5675<br>5675<br>5670<br>5670<br>10-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                                             |                                           |                                                                           | E                           | ¥///      |                                                                                                                                                                                                                                                                                                                                                   |                         |                      |                      |                   |                                   |                                    |                                                                               |                                                                     |                                     |
| 5675<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                                             |                                           |                                                                           |                             |           | 3.5 - 8.0 ft. Lean CLAY (CL) (Fill), with                                                                                                                                                                                                                                                                                                         | -                       |                      |                      |                   |                                   |                                    |                                                                               |                                                                     |                                     |
| 5675<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                       |                                             | / ⊢                                       |                                                                           |                             |           | trace gravel, brown, moist, soft to medium stiff.                                                                                                                                                                                                                                                                                                 |                         |                      |                      |                   |                                   |                                    |                                                                               |                                                                     |                                     |
| 5670 -<br>15-<br>15-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                       |                                             | 111                                       | 2-2                                                                       | 4                           |           |                                                                                                                                                                                                                                                                                                                                                   |                         |                      |                      |                   |                                   |                                    |                                                                               |                                                                     |                                     |
| 5670 -<br>15-<br>15-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                       |                                             |                                           | 22                                                                        |                             |           |                                                                                                                                                                                                                                                                                                                                                   |                         |                      |                      |                   |                                   |                                    |                                                                               |                                                                     |                                     |
| 5670 -<br>15-<br>15-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                                             | И                                         |                                                                           |                             |           |                                                                                                                                                                                                                                                                                                                                                   |                         |                      |                      |                   |                                   |                                    |                                                                               |                                                                     |                                     |
| 5670 -<br>15-<br>15-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                       |                                             |                                           |                                                                           |                             |           |                                                                                                                                                                                                                                                                                                                                                   |                         |                      |                      |                   |                                   |                                    |                                                                               |                                                                     |                                     |
| 5670 -<br>15-<br>15 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                                             | И                                         |                                                                           |                             |           | <b>8.0 - 34.0 ft. Lean CLAY (CL)</b> , brown to dark brown, moist, very soft to soft,                                                                                                                                                                                                                                                             |                         |                      |                      |                   |                                   |                                    |                                                                               |                                                                     |                                     |
| 5670 -<br>15-<br>15 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                       |                                             | $\left\{ \left  \right  \right\}$         |                                                                           |                             |           | calcareous.                                                                                                                                                                                                                                                                                                                                       |                         |                      |                      |                   |                                   |                                    |                                                                               |                                                                     |                                     |
| - 15-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0-                      |                                             |                                           | 2-2                                                                       | 4                           |           |                                                                                                                                                                                                                                                                                                                                                   | 20.8                    | 103.1                |                      | 2.8               | 97.2                              | 35                                 | 20                                                                            | A-6 (19)                                                            | S/C=0.1%                            |
| - 15-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                       |                                             | ( ⊢                                       | 2-2                                                                       | 4                           |           |                                                                                                                                                                                                                                                                                                                                                   | 20.0                    | 105.1                |                      | 2.0               | 91.2                              | 55                                 | 20                                                                            | CL                                                                  |                                     |
| - 15-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                       |                                             |                                           |                                                                           |                             |           |                                                                                                                                                                                                                                                                                                                                                   |                         |                      |                      |                   |                                   |                                    |                                                                               |                                                                     |                                     |
| - 15-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                                             | И                                         |                                                                           |                             |           |                                                                                                                                                                                                                                                                                                                                                   |                         |                      |                      |                   |                                   |                                    |                                                                               |                                                                     |                                     |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                             | )                                         |                                                                           |                             |           |                                                                                                                                                                                                                                                                                                                                                   |                         |                      |                      |                   |                                   |                                    |                                                                               |                                                                     |                                     |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                       |                                             | И                                         |                                                                           |                             |           |                                                                                                                                                                                                                                                                                                                                                   |                         |                      |                      |                   |                                   |                                    |                                                                               |                                                                     |                                     |
| 5665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                       |                                             | -                                         | 1.0                                                                       | 2                           |           |                                                                                                                                                                                                                                                                                                                                                   |                         |                      |                      |                   |                                   |                                    |                                                                               |                                                                     |                                     |
| 5665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                       |                                             | $ \rangle -$                              | 1-2                                                                       | 3                           |           |                                                                                                                                                                                                                                                                                                                                                   |                         |                      |                      |                   |                                   |                                    |                                                                               |                                                                     |                                     |
| 5665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                       |                                             | (                                         |                                                                           |                             |           |                                                                                                                                                                                                                                                                                                                                                   |                         |                      |                      |                   |                                   |                                    |                                                                               |                                                                     |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                                             |                                           |                                                                           |                             |           |                                                                                                                                                                                                                                                                                                                                                   |                         |                      |                      |                   |                                   |                                    |                                                                               |                                                                     |                                     |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ]                       |                                             | И                                         |                                                                           |                             |           |                                                                                                                                                                                                                                                                                                                                                   |                         |                      |                      |                   |                                   |                                    |                                                                               |                                                                     |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                       |                                             |                                           |                                                                           |                             |           |                                                                                                                                                                                                                                                                                                                                                   |                         |                      |                      |                   |                                   |                                    |                                                                               |                                                                     |                                     |
| 20-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20-                     |                                             | ИН                                        | 1-1                                                                       | 2                           |           |                                                                                                                                                                                                                                                                                                                                                   | 26.6                    | 100.8                | 0.0                  | 5.0               | 95.0                              | 33                                 | 17                                                                            |                                                                     | pH=8.4                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                       |                                             |                                           | 1-1                                                                       |                             |           |                                                                                                                                                                                                                                                                                                                                                   | 20.0                    | 100.0                | 0.0                  | 5.0               | 90.0                              | 55                                 | 17                                                                            | CĽ                                                                  | S=1.584%<br>Chl=0.0124%             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                       |                                             |                                           |                                                                           |                             |           |                                                                                                                                                                                                                                                                                                                                                   |                         |                      |                      |                   |                                   |                                    |                                                                               |                                                                     | UCCS=3.5 psi<br>Re=76ohm·cm         |
| 5660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                                             | (                                         |                                                                           |                             |           |                                                                                                                                                                                                                                                                                                                                                   |                         |                      |                      |                   |                                   |                                    |                                                                               |                                                                     |                                     |
| 5660 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                             | $ \rangle $                               |                                                                           |                             |           |                                                                                                                                                                                                                                                                                                                                                   |                         |                      |                      |                   |                                   |                                    |                                                                               |                                                                     |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                       | - 1                                         | И                                         |                                                                           |                             |           |                                                                                                                                                                                                                                                                                                                                                   |                         |                      |                      |                   |                                   |                                    |                                                                               |                                                                     |                                     |
| 25-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                       |                                             |                                           | 4.0                                                                       |                             |           |                                                                                                                                                                                                                                                                                                                                                   |                         |                      |                      |                   |                                   |                                    |                                                                               |                                                                     |                                     |
| .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -<br>-                  |                                             |                                           | 4-8                                                                       | 12                          |           |                                                                                                                                                                                                                                                                                                                                                   |                         |                      |                      |                   |                                   |                                    |                                                                               |                                                                     |                                     |



|                                          |                                  |                                                    | Sec.          |                                                             |        |
|------------------------------------------|----------------------------------|----------------------------------------------------|---------------|-------------------------------------------------------------|--------|
|                                          |                                  | 2 3 4                                              |               | 6 7 the been<br>8                                           | 9      |
|                                          |                                  |                                                    |               |                                                             | R.     |
|                                          | Boring:                          | P-1                                                | AC:           | 9.5"                                                        |        |
|                                          | Roadway:                         | US 350                                             | PCC:          | -                                                           |        |
|                                          | Direction:                       | Southbound                                         | Base:         | -                                                           |        |
| l                                        | Lane:                            | Outside                                            | Notes:        | -                                                           |        |
|                                          |                                  | 2 et 3 4 cos                                       |               |                                                             |        |
|                                          | Boring:                          | P-2                                                | AC:           | 7"                                                          |        |
|                                          | Roadway:<br>Direction:           | US 350<br>Norththbound                             | PCC:<br>Base: | -                                                           | 4      |
|                                          | Lane:                            | Outside                                            | Notes:        | Delamination and stripping below 2.5". Stripping below 4.5" | ]      |
|                                          | Yeh and A<br>Geotechnical • Geot | Associates, Inc.<br>ogical • Construction Services | Pave          | ment Core Photographs                                       | FIGURE |
| PROJECT NO.<br>FIGURE BY:<br>CHECKED BY: |                                  | DATE: 11/16/2020<br>YEH OFFICE: Colorado Springs   | CDO           | OT Region 2 Bridge Bundle<br>Structure O-19-D               | B-1    |

## **APPENDIX C**

## SUMMARY OF LABORATORY TEST RESULTS





Yeh and Associates, Inc. Geotechnical • Geological • Construction Services

7.0

MC

15.6

Colorado Springs Lab

A-6 (19)

CL

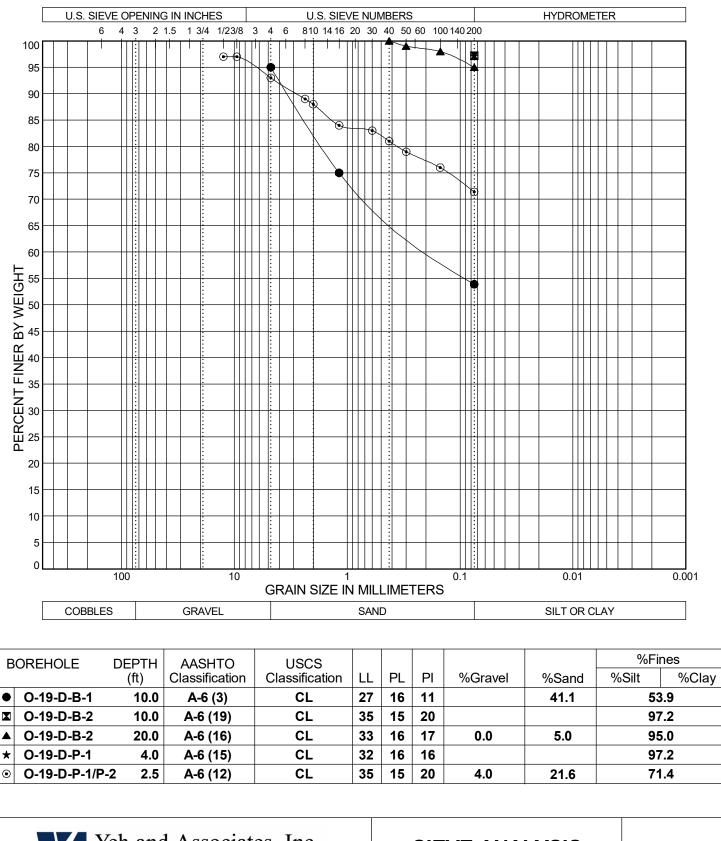
|                |               |                |                            |                                                         | S                    | umr         | mary                   | of | La     | bor | atc | ory Te                    | st Re                      | sults                   |                                       |                            |         |          |        |
|----------------|---------------|----------------|----------------------------|---------------------------------------------------------|----------------------|-------------|------------------------|----|--------|-----|-----|---------------------------|----------------------------|-------------------------|---------------------------------------|----------------------------|---------|----------|--------|
| Project No: _  | 220-          | 063            | Proje                      | Project Name: CDOT Region 2 Bridge Bundle Date:11-19-20 |                      |             |                        |    |        |     |     |                           | 9-2020                     |                         |                                       |                            |         |          |        |
| Sample Lo      | cation        |                | Natural                    | Natural                                                 | G                    | radatio     | on                     | A  | tterbe | rg  |     | Water                     | Water                      |                         | Swell (+) /                           | Unconf.                    |         | Classifi | cation |
| Boring<br>No.  | Depth<br>(ft) | Sample<br>Type | Moisture<br>Content<br>(%) | Dry<br>Density<br>(pcf)                                 | Gravel<br>>#4<br>(%) | Sand<br>(%) | Fines<br>< #200<br>(%) | LL | PL     | PI  | pН  | Soluble<br>Sulfate<br>(%) | Soluble<br>Chloride<br>(%) | Resistivity<br>(ohm-cm) | Collapse (-)<br>(% at Load<br>in psf) | Comp.<br>Strength<br>(psi) | R-Value | AASHTO   | USCS   |
| O-19-D Scour   | 0             | BULK           | 2.7                        |                                                         | 6.0                  | 56.7        | 37.3                   |    |        |     |     |                           |                            |                         |                                       |                            |         |          |        |
| O-19-D-B-1     | 10.0          | МС             | 11.7                       | 110.6                                                   |                      | 46.1        | 53.9                   | 27 | 16     | 11  |     |                           |                            |                         |                                       |                            |         | A-6 (3)  | CL     |
| O-19-D-B-1     | 35.0          | МС             |                            |                                                         |                      |             |                        |    |        |     | 7.8 | 0.357                     | 0.0003                     | 578                     |                                       |                            |         |          |        |
| O-19-D-B-2     | 10.0          | МС             | 20.8                       | 103.1                                                   |                      | 2.8         | 97.2                   | 35 | 15     | 20  |     |                           |                            |                         | 0.1 @ 1000                            |                            |         | A-6 (19) | CL     |
| O-19-D-B-2     | 20.0          | МС             | 26.6                       | 100.8                                                   | 0.0                  | 5.0         | 95.0                   | 33 | 16     | 17  | 8.4 | 1.584                     | 0.0124                     | 76                      |                                       | 3.5                        |         | A-6 (16) | CL     |
| O-19-D-B-2     | 35.0          | МС             |                            |                                                         |                      |             |                        |    |        |     |     |                           |                            |                         |                                       |                            |         |          |        |
| O-19-D-P-1     | 4.0           | МС             | 18.5                       | 109.2                                                   |                      | 2.8         | 97.2                   | 32 | 16     | 16  |     |                           |                            |                         | 1.7 @ 200                             |                            |         | A-6 (15) | CL     |
| O-19-D-P-1/P-2 | 2.5           | BULK           | 15.9                       |                                                         | 4.0                  | 24.6        | 71.4                   | 35 | 15     | 20  |     | 0.403                     | 0.0162                     |                         |                                       |                            | 12      | A-6 (12) | CL     |

O-19-D-P-2

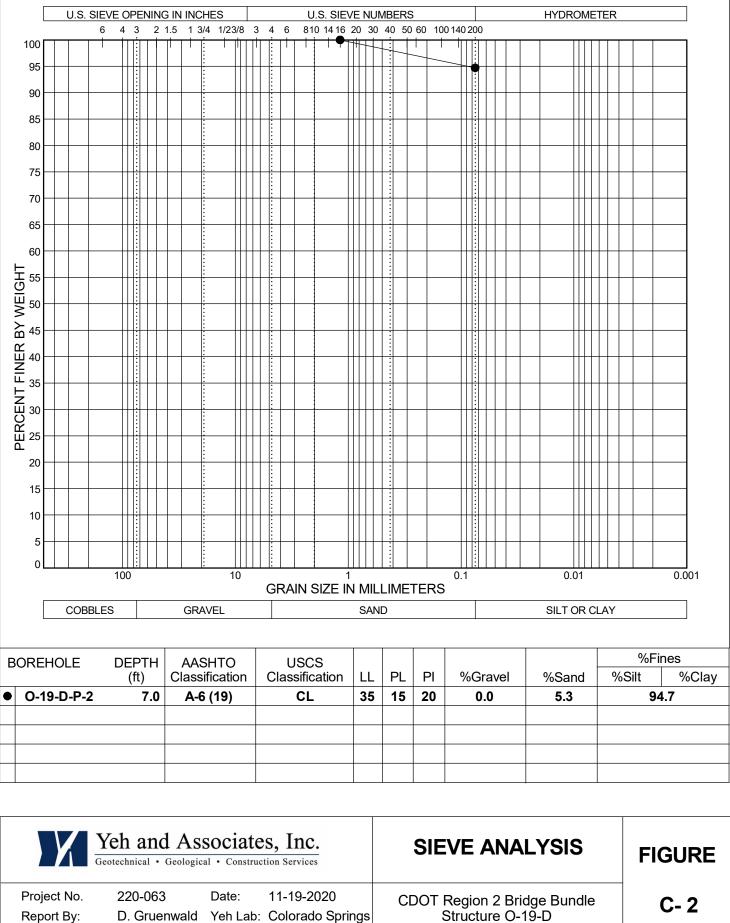
114.6

5.3

0.0

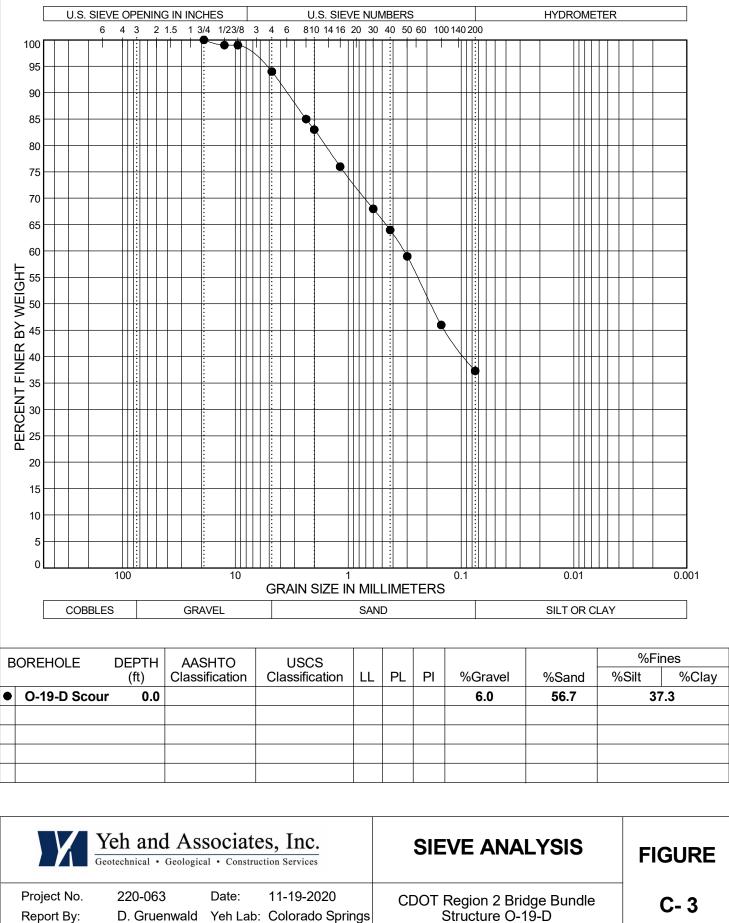

94.7

35


15

20

2.1 @ 200

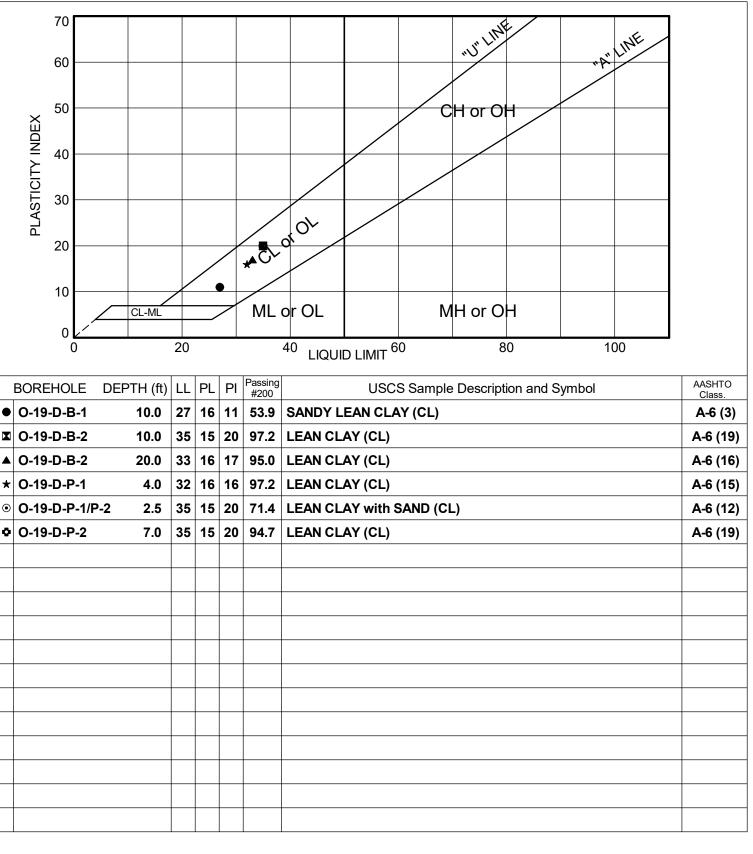



|                                          | Yeh and As<br>eotechnical • Geologic | SOCIATE<br>al • Construc | es, Inc.<br>tion Services      | SIEVE ANALYSIS                                  | FIGURE |
|------------------------------------------|--------------------------------------|--------------------------|--------------------------------|-------------------------------------------------|--------|
| Project No.<br>Report By:<br>Checked By: | 220-063<br>D. Gruenwald<br>J. McCall |                          | 11-19-2020<br>Colorado Springs | CDOT Region 2 Bridge Bundle<br>Structure O-19-D | C- 1   |



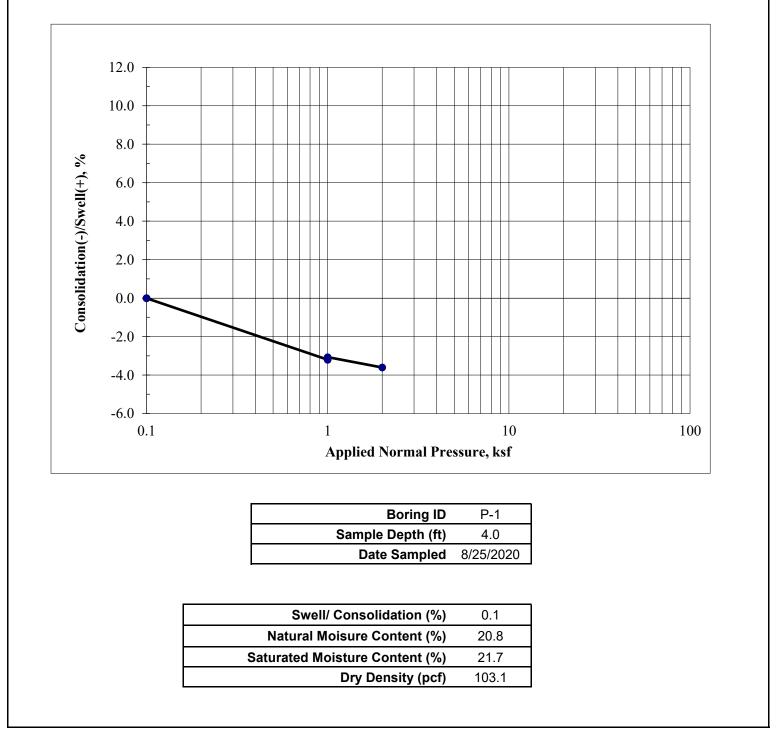
Checked By:

J. McCall



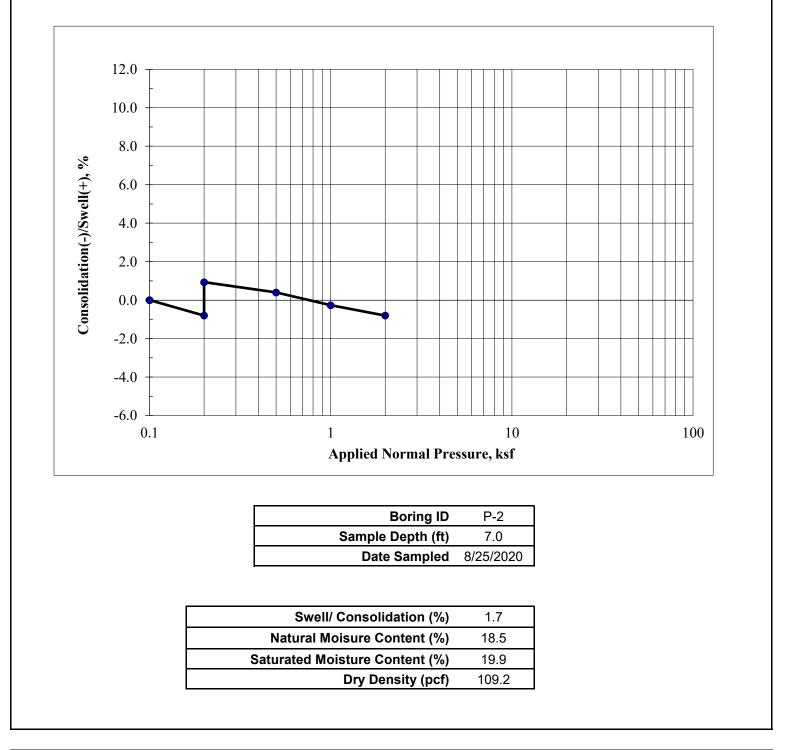

Report By:

Checked By:


J. McCall

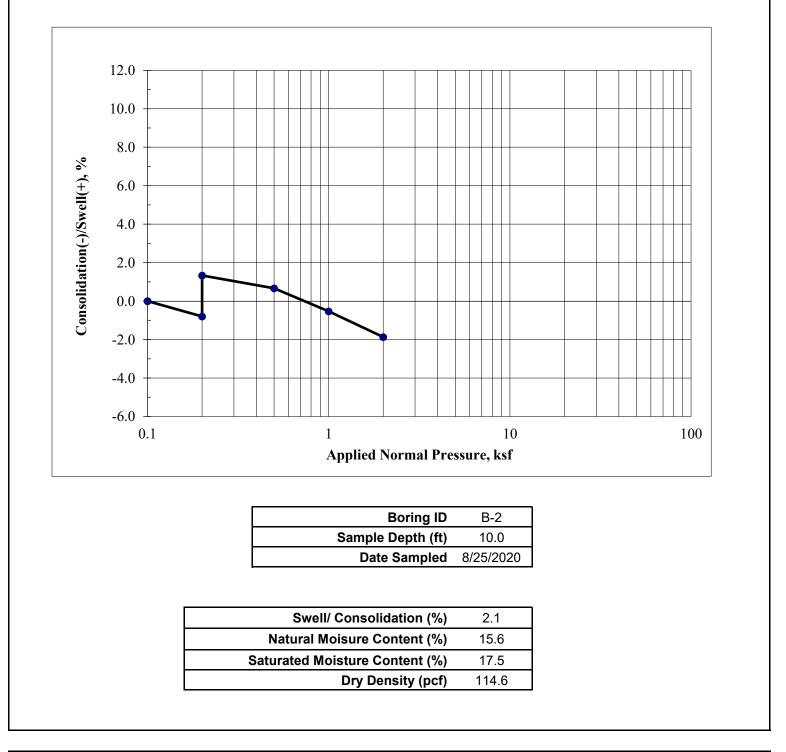
D. Gruenwald Yeh Lab: Colorado Springs




| Yeh and Associates, Inc.<br>Geotechnical • Geological • Construction Services                                      | ATTERBERG LIMITS                                | FIGURE |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------|
| Project No. 220-063 Date: 11-19-2020<br>Report By: D. Gruenwald Yeh Lab: Colorado Springs<br>Checked By: J. McCall | CDOT Region 2 Bridge Bundle<br>Structure O-19-D | C - 4  |

SWELL/CONSOLIDATION TEST - ASTM D 4546




| X           | Yeh and<br>Geotechnical • | d Assoc<br>Geological • C | iates, Inc.      | SWELL/ CONSOLIDATION<br>TEST RESULTS | FIGURE |
|-------------|---------------------------|---------------------------|------------------|--------------------------------------|--------|
| Project No. | 220-063                   | Date:                     | 11/19/2020       | CDOT Region 2 Bridge Bundle          | C-5    |
| Report By:  | DG                        | Yeh Lab:                  | Colorado Springs | Structure O-19-D                     |        |
| Checked By: | JTM                       |                           |                  |                                      |        |

SWELL/CONSOLIDATION TEST - ASTM D 4546



| X           |         |          | iates, Inc.      | SWELL/ CONSOLIDATION<br>TEST RESULTS | FIGURE |
|-------------|---------|----------|------------------|--------------------------------------|--------|
| Project No. | 220-063 | Date:    | 11/19/2020       | CDOT Region 2 Bridge Bundle          | C-6    |
| Report By:  | DG      | Yeh Lab: | Colorado Springs | Structure O-19-D                     |        |
| Checked By: | JTM     |          |                  |                                      |        |

SWELL/CONSOLIDATION TEST - ASTM D 4546



| X           | Yeh a<br>Geotechnica | nd Assoc | iates, Inc.      | SWELL/ CONSOLIDATION<br>TEST RESULTS | FIGURE |
|-------------|----------------------|----------|------------------|--------------------------------------|--------|
| Project No. | 220-063              | Date:    | 11/19/2020       | CDOT Region 2 Bridge Bundle          | C-7    |
| Report By:  | DG                   | Yeh Lab: | Colorado Springs | Structure O-19-D                     |        |
| Checked By: | JTM                  |          |                  |                                      |        |



L/D Ritio:

2.03

Clay- Lab Denver

### **STRESS-STRAIN CURVE OF COHESIVE SOIL (ASTM D 2166)**

| Project No:      | 220-063 | Project Name: | CDOT Region   | 2 Bridge Bundle O-19-D | )        |
|------------------|---------|---------------|---------------|------------------------|----------|
| Sampled by       | BHL     | Date Sampled: | 8/25/2020     | Date Tested:           | 10/16/20 |
| Boring No:       | B-2     | Depth (ft):   | 20            | Blow Counts:           |          |
| Tested by:       |         | M.A           | Checked by:   | JTM                    |          |
| Soil Classificat | ion:    |               | A-6 (16) / CL |                        |          |

| Axial<br>StrainAxial<br>Stress(%)(psf)0.0%0.00.3%98.80.5%133.00.8%147.41.0%166.71.3%176.01.5%180.41.8%194.62.0%203.82.3%208.12.6%222.02.8%231.13.1%240.03.3%253.83.6%267.43.8%276.34.1%285.04.3%289.04.6%297.74.9%311.05.1%324.35.6%345.95.9%349.66.1%353.36.4%366.36.4%366.3                                                                                                                                                                                                                                                                                                                                                                                            |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $\begin{array}{c cccc} (\%) & (psf) \\ \hline 0.0\% & 0.0 \\ \hline 0.3\% & 98.8 \\ \hline 0.5\% & 133.0 \\ \hline 0.8\% & 147.4 \\ \hline 1.0\% & 166.7 \\ \hline 1.3\% & 176.0 \\ \hline 1.5\% & 180.4 \\ \hline 1.8\% & 194.6 \\ \hline 2.0\% & 203.8 \\ \hline 2.3\% & 208.1 \\ \hline 2.6\% & 222.0 \\ \hline 2.8\% & 231.1 \\ \hline 3.1\% & 240.0 \\ \hline 3.3\% & 253.8 \\ \hline 3.6\% & 267.4 \\ \hline 3.8\% & 276.3 \\ \hline 4.1\% & 285.0 \\ \hline 4.3\% & 289.0 \\ \hline 4.6\% & 297.7 \\ \hline 4.9\% & 311.0 \\ \hline 5.1\% & 324.3 \\ \hline 5.6\% & 345.9 \\ \hline 5.9\% & 349.6 \\ \hline 6.1\% & 353.3 \\ \hline 6.4\% & 366.3 \\ \end{array}$ |  |
| $\begin{array}{c cccc} 0.0\% & 0.0 \\ \hline 0.3\% & 98.8 \\ \hline 0.5\% & 133.0 \\ \hline 0.8\% & 147.4 \\ \hline 1.0\% & 166.7 \\ \hline 1.3\% & 176.0 \\ \hline 1.5\% & 180.4 \\ \hline 1.8\% & 194.6 \\ \hline 2.0\% & 203.8 \\ \hline 2.3\% & 208.1 \\ \hline 2.6\% & 222.0 \\ \hline 2.8\% & 231.1 \\ \hline 3.1\% & 240.0 \\ \hline 3.3\% & 253.8 \\ \hline 3.6\% & 267.4 \\ \hline 3.8\% & 276.3 \\ \hline 4.1\% & 285.0 \\ \hline 4.3\% & 289.0 \\ \hline 4.6\% & 297.7 \\ \hline 4.9\% & 311.0 \\ \hline 5.1\% & 324.3 \\ \hline 5.6\% & 345.9 \\ \hline 5.9\% & 349.6 \\ \hline 6.1\% & 353.3 \\ \hline 6.4\% & 366.3 \\ \hline \end{array}$                 |  |
| $\begin{array}{c ccccc} 0.3\% & 98.8 \\ \hline 0.5\% & 133.0 \\ \hline 0.8\% & 147.4 \\ \hline 1.0\% & 166.7 \\ \hline 1.3\% & 176.0 \\ \hline 1.5\% & 180.4 \\ \hline 1.8\% & 194.6 \\ \hline 2.0\% & 203.8 \\ \hline 2.3\% & 208.1 \\ \hline 2.6\% & 222.0 \\ \hline 2.8\% & 231.1 \\ \hline 3.1\% & 240.0 \\ \hline 3.3\% & 253.8 \\ \hline 3.6\% & 267.4 \\ \hline 3.8\% & 276.3 \\ \hline 4.1\% & 285.0 \\ \hline 4.3\% & 289.0 \\ \hline 4.6\% & 297.7 \\ \hline 4.9\% & 311.0 \\ \hline 5.1\% & 324.3 \\ \hline 5.6\% & 345.9 \\ \hline 5.9\% & 349.6 \\ \hline 6.1\% & 353.3 \\ \hline 6.4\% & 366.3 \\ \hline \end{array}$                                      |  |
| $\begin{array}{c ccccc} 0.5\% & 133.0 \\ \hline 0.8\% & 147.4 \\ \hline 1.0\% & 166.7 \\ \hline 1.3\% & 176.0 \\ \hline 1.5\% & 180.4 \\ \hline 1.8\% & 194.6 \\ \hline 2.0\% & 203.8 \\ \hline 2.3\% & 208.1 \\ \hline 2.6\% & 222.0 \\ \hline 2.8\% & 231.1 \\ \hline 3.1\% & 240.0 \\ \hline 3.3\% & 253.8 \\ \hline 3.6\% & 267.4 \\ \hline 3.8\% & 276.3 \\ \hline 4.1\% & 285.0 \\ \hline 4.3\% & 289.0 \\ \hline 4.6\% & 297.7 \\ \hline 4.9\% & 311.0 \\ \hline 5.1\% & 324.3 \\ \hline 5.6\% & 345.9 \\ \hline 5.9\% & 349.6 \\ \hline 6.1\% & 353.3 \\ \hline 6.4\% & 366.3 \\ \hline \end{array}$                                                             |  |
| $\begin{array}{c ccccc} 0.8\% & 147.4 \\ 1.0\% & 166.7 \\ 1.3\% & 176.0 \\ 1.5\% & 180.4 \\ 1.8\% & 194.6 \\ 2.0\% & 203.8 \\ 2.3\% & 208.1 \\ 2.6\% & 222.0 \\ 2.8\% & 231.1 \\ 3.1\% & 240.0 \\ 3.3\% & 253.8 \\ 3.6\% & 267.4 \\ 3.8\% & 276.3 \\ 4.1\% & 285.0 \\ 4.3\% & 289.0 \\ 4.6\% & 297.7 \\ 4.9\% & 311.0 \\ 5.1\% & 324.3 \\ 5.4\% & 332.8 \\ 5.6\% & 345.9 \\ 5.9\% & 349.6 \\ 6.1\% & 353.3 \\ 6.4\% & 366.3 \\ \end{array}$                                                                                                                                                                                                                              |  |
| $\begin{array}{c ccccc} 1.0\% & 166.7 \\ 1.3\% & 176.0 \\ 1.5\% & 180.4 \\ 1.8\% & 194.6 \\ 2.0\% & 203.8 \\ 2.3\% & 208.1 \\ 2.6\% & 222.0 \\ 2.8\% & 231.1 \\ 3.1\% & 240.0 \\ 3.3\% & 253.8 \\ 3.6\% & 267.4 \\ 3.8\% & 276.3 \\ 4.1\% & 285.0 \\ 4.3\% & 289.0 \\ 4.6\% & 297.7 \\ 4.9\% & 311.0 \\ 5.1\% & 324.3 \\ 5.4\% & 332.8 \\ 5.6\% & 345.9 \\ 5.9\% & 349.6 \\ 6.1\% & 353.3 \\ 6.4\% & 366.3 \\ \end{array}$                                                                                                                                                                                                                                               |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| $\begin{array}{c ccccc} 1.8\% & 194.6 \\ \hline 2.0\% & 203.8 \\ \hline 2.3\% & 208.1 \\ \hline 2.6\% & 222.0 \\ \hline 2.8\% & 231.1 \\ \hline 3.1\% & 240.0 \\ \hline 3.3\% & 253.8 \\ \hline 3.6\% & 267.4 \\ \hline 3.8\% & 276.3 \\ \hline 4.1\% & 285.0 \\ \hline 4.3\% & 289.0 \\ \hline 4.6\% & 297.7 \\ \hline 4.9\% & 311.0 \\ \hline 5.1\% & 324.3 \\ \hline 5.4\% & 332.8 \\ \hline 5.6\% & 345.9 \\ \hline 5.9\% & 349.6 \\ \hline 6.1\% & 353.3 \\ \hline 6.4\% & 366.3 \\ \end{array}$                                                                                                                                                                    |  |
| $\begin{array}{c cccc} 2.0\% & 203.8 \\ 2.3\% & 208.1 \\ 2.6\% & 222.0 \\ 2.8\% & 231.1 \\ 3.1\% & 240.0 \\ 3.3\% & 253.8 \\ 3.6\% & 267.4 \\ 3.8\% & 276.3 \\ 4.1\% & 285.0 \\ 4.3\% & 289.0 \\ 4.6\% & 297.7 \\ 4.9\% & 311.0 \\ 5.1\% & 324.3 \\ 5.4\% & 332.8 \\ 5.6\% & 345.9 \\ 5.9\% & 349.6 \\ 6.1\% & 353.3 \\ 6.4\% & 366.3 \\ \end{array}$                                                                                                                                                                                                                                                                                                                    |  |
| $\begin{array}{c ccccc} 2.3\% & 208.1 \\ \hline 2.6\% & 222.0 \\ \hline 2.8\% & 231.1 \\ \hline 3.1\% & 240.0 \\ \hline 3.3\% & 253.8 \\ \hline 3.6\% & 267.4 \\ \hline 3.8\% & 276.3 \\ \hline 4.1\% & 285.0 \\ \hline 4.3\% & 289.0 \\ \hline 4.6\% & 297.7 \\ \hline 4.9\% & 311.0 \\ \hline 5.1\% & 324.3 \\ \hline 5.4\% & 332.8 \\ \hline 5.6\% & 345.9 \\ \hline 5.9\% & 349.6 \\ \hline 6.1\% & 353.3 \\ \hline 6.4\% & 366.3 \\ \end{array}$                                                                                                                                                                                                                    |  |
| $\begin{array}{c cccc} 2.6\% & 222.0 \\ \hline 2.8\% & 231.1 \\ \hline 3.1\% & 240.0 \\ \hline 3.3\% & 253.8 \\ \hline 3.6\% & 267.4 \\ \hline 3.8\% & 276.3 \\ \hline 4.1\% & 285.0 \\ \hline 4.3\% & 289.0 \\ \hline 4.6\% & 297.7 \\ \hline 4.9\% & 311.0 \\ \hline 5.1\% & 324.3 \\ \hline 5.4\% & 332.8 \\ \hline 5.6\% & 345.9 \\ \hline 5.9\% & 349.6 \\ \hline 6.1\% & 353.3 \\ \hline 6.4\% & 366.3 \\ \end{array}$                                                                                                                                                                                                                                             |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| $\begin{array}{c cccc} 4.1\% & 285.0 \\ \hline 4.3\% & 289.0 \\ \hline 4.6\% & 297.7 \\ \hline 4.9\% & 311.0 \\ \hline 5.1\% & 324.3 \\ \hline 5.4\% & 332.8 \\ \hline 5.6\% & 345.9 \\ \hline 5.9\% & 349.6 \\ \hline 6.1\% & 353.3 \\ \hline 6.4\% & 366.3 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                             |  |
| $\begin{array}{c cccc} 4.6\% & 297.7 \\ \hline 4.9\% & 311.0 \\ \hline 5.1\% & 324.3 \\ \hline 5.4\% & 332.8 \\ \hline 5.6\% & 345.9 \\ \hline 5.9\% & 349.6 \\ \hline 6.1\% & 353.3 \\ \hline 6.4\% & 366.3 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 4.9%311.05.1%324.35.4%332.85.6%345.95.9%349.66.1%353.36.4%366.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 4.9%311.05.1%324.35.4%332.85.6%345.95.9%349.66.1%353.36.4%366.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| $\begin{array}{c cccc} 5.1\% & 324.3 \\ \hline 5.4\% & 332.8 \\ \hline 5.6\% & 345.9 \\ \hline 5.9\% & 349.6 \\ \hline 6.1\% & 353.3 \\ \hline 6.4\% & 366.3 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 5.4%         332.8           5.6%         345.9           5.9%         349.6           6.1%         353.3           6.4%         366.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 5.6%         345.9           5.9%         349.6           6.1%         353.3           6.4%         366.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 6.1%353.36.4%366.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 6.1%353.36.4%366.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 6.4% 366.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 6.6% 379.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 6.9% 433.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 7.2% 446.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 7.4% 458.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 7.7% 471.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 7.9% 483.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 8.2% 504.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 8.4% 489.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 8.7% 479.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 9.0% 437.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 9.2% 377.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |





# YEH AND ASSOCIATES, INC R-Value Test Report

| oject Number<br>mple Id:<br>cation:<br>te Sampled:<br>Value at 30 | P-1 / P-2<br>O-19-D |         |        | Project Name:<br>Depth (ft):<br>Station:<br>Date Tested: |        | CDOT Region 2 Bridge Bun           2.5           0           11/4/2020           12 |       | le       |
|-------------------------------------------------------------------|---------------------|---------|--------|----------------------------------------------------------|--------|-------------------------------------------------------------------------------------|-------|----------|
|                                                                   |                     |         |        |                                                          |        |                                                                                     |       |          |
|                                                                   |                     |         |        |                                                          |        |                                                                                     |       |          |
|                                                                   |                     |         |        |                                                          |        |                                                                                     |       |          |
|                                                                   |                     |         |        |                                                          |        |                                                                                     |       | - 90     |
|                                                                   |                     |         |        |                                                          |        |                                                                                     |       |          |
|                                                                   |                     |         |        |                                                          |        |                                                                                     |       | - 80     |
|                                                                   |                     |         |        |                                                          |        |                                                                                     |       |          |
|                                                                   |                     |         |        |                                                          |        |                                                                                     |       |          |
|                                                                   |                     |         |        |                                                          |        |                                                                                     |       | - 70     |
|                                                                   |                     |         |        | <b>1</b>                                                 |        |                                                                                     |       |          |
|                                                                   |                     |         |        |                                                          |        |                                                                                     |       |          |
|                                                                   |                     |         |        |                                                          |        |                                                                                     |       | - 60     |
|                                                                   |                     |         |        |                                                          |        |                                                                                     |       |          |
|                                                                   |                     |         |        |                                                          |        |                                                                                     |       | - 50     |
|                                                                   |                     |         |        |                                                          |        |                                                                                     |       |          |
|                                                                   |                     |         |        |                                                          |        |                                                                                     |       |          |
|                                                                   |                     |         |        |                                                          |        |                                                                                     |       | - 40     |
|                                                                   |                     |         |        |                                                          |        |                                                                                     |       |          |
|                                                                   |                     |         |        |                                                          |        |                                                                                     |       | - 30     |
|                                                                   |                     |         |        |                                                          |        |                                                                                     |       |          |
|                                                                   |                     |         |        |                                                          |        |                                                                                     |       |          |
|                                                                   |                     |         |        |                                                          |        |                                                                                     |       | - 20     |
|                                                                   |                     |         |        |                                                          |        |                                                                                     |       |          |
|                                                                   |                     |         |        |                                                          |        |                                                                                     |       | <u> </u> |
|                                                                   |                     |         |        |                                                          |        |                                                                                     |       | - 10     |
|                                                                   |                     |         |        |                                                          |        |                                                                                     |       | <u> </u> |
|                                                                   |                     |         |        |                                                          |        |                                                                                     |       |          |
| 800                                                               | 70                  | 0 60    | 0 5    | 500 4                                                    | 00     | 300                                                                                 | 200   | 100      |
|                                                                   |                     |         | Εx     | xudation Pressure (psi                                   | )      |                                                                                     |       |          |
| Test                                                              | Compact.            | Density | Moist. | Horizont.                                                | Sample | Exud.                                                                               | R     | R        |
| No.                                                               | Press.              | (pcf)   | (%)    | Pressure                                                 | Height | Pressure                                                                            | Value | Valu     |
|                                                                   | (psi)               |         | /      | (psi)'@ 160 psi                                          | (in).  | (psi)                                                                               |       | Correc   |
| 1                                                                 | 350                 | 109.2   | 17.0   | 105                                                      | 2.51   | 558                                                                                 | 25    | 25       |
| 2                                                                 | 350                 | 107.6   | 19.0   | 120                                                      | 2.48   | 409                                                                                 | 17    | 17       |
|                                                                   |                     |         | 21.0   | 135                                                      | 2.51   | 238                                                                                 | 10    | 10       |

Rev. 08-16-2018